Change search
ReferencesLink to record
Permanent link

Direct link
Modeling Flow in a Compromised Pediatric Airway Breathing Air and Heliox
Aerospace Engineering, University of Cincinnati.ORCID iD: 0000-0001-7330-6965
Otolargyngology, Head and Neck Surgery, University of Cincinnati-Medical Center.
Aerospace Engineering, University of Cincinnati.
Cincinnati Children's Hospital.
Show others and affiliations
2008 (English)In: The Laryngoscope, ISSN 0023-852X, E-ISSN 1531-4995, Vol. 118, no 12, 2205-2211 p.Article in journal (Refereed) Published
Abstract [en]

Objectives/Hypothesis: The aim of this study was to perform computer simulations of flow within an accurate model of a pediatric airway with subglottic stenosis. It is believed that the airflow characteristics in a stenotic airway are strongly related to the sensation of dyspnea. Methodology: Computed tomography images through the respiratory tract of an infant with subglottic stenosis, were used to construct the three-dimensional geometry of the airway. By using computational fluid dynamics (CFD) modeling to capture airway flow patterns during inspiration and expiration, we obtained information pertaining to flow velocity, static airway wall pressure, pressure drop across the stenosis, and wall shear stress. These simulations were performed with both air and heliox. Results: Unlike air, heliox maintained laminar flow through the stenosis. The calculated pressure drop over stenosis was lower for the heliox flow, in contrast to the airflow case. This lead to an approximately 40% decrease in airway resistance when using heliox, and presumably causes a decrease in the level of effort required for breathing. Conclusions: CFD simulations offer a quantitative method of evaluating airway flow dynamics in patients with airway abnormalities. CFD modeling illustrated the flow features and quantified flow parameters within a pediatric airway with subglottic stenosis. Simulations with air and heliox conditions mirrored the known clinical benefits of heliox as compared with air. We anticipate that computer simulation models will ultimately allow a better understanding of changes in flow caused by specific medical and surgical interventions in patients with conditions associated with dyspnea.

Place, publisher, year, edition, pages
Wiley, The Triological Society , 2008. Vol. 118, no 12, 2205-2211 p.
National Category
Fluid Mechanics and Acoustics Medical Image Processing Pediatrics Respiratory Medicine and Allergy
URN: urn:nbn:se:kth:diva-47752DOI: 10.1097/MLG.0b013e3181856051ISI: 000263200900023OAI: diva2:456103
QC 20111117Available from: 2011-11-12 Created: 2011-11-12 Last updated: 2011-11-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Mihaescu, Mihai
In the same journal
The Laryngoscope
Fluid Mechanics and AcousticsMedical Image ProcessingPediatricsRespiratory Medicine and Allergy

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 52 hits
ReferencesLink to record
Permanent link

Direct link