Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of the photoinduced electron injection processes for p-type triphenylamine-sensitized solar cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry.
2011 (English)In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, no 11, 4537-4549 p.Article in journal (Refereed) Published
Abstract [en]

We have carried out theoretical investigation aiming at modelling the assessment of mechanisms of photoinduced processes in a recent p-type organic metal-free dye derived from the triphenylamine (P-1) structure. In the P-1 system, one uses the triphenylamine moiety as the electron donor, malononitrile as the electron acceptor, and a thiophene that plays the role of the conjugated chain. Basically, the difference between the P-1 dye and the common organic dyes used in the n-type DSSC field is the anchoring group located on the electron donor group. In a first step, DFT and TDDFT approaches have been exploited to calculate the key parameters controlling both the intramolecular charge transfer (ICT) and hole transfer rate constants in the Gurney-Gerischer-Marcus (GGM) formalism, for either a solvent-controlled adiabatic or a nonadiabatic electron transfer. These are: (i) the electronic coupling; (ii) the reorganization energies; and (iii) the variation of the Gibbs energy. The gathered results are in agreement with the experimental trends. (i) The vertical ICT excited states energy has been calculated at 2.67 eV, in perfect line with the experiment (2.65 eV). (ii) Two mechanisms can be conceived for the hole transfer and regeneration process. The first deals with the reduction of dye molecule at the excited state followed by an electron transfer from the reduced dye to the oxidized regenerator. The second implies a redox reaction between the excited dye and the oxidized regenerator, followed by an electron transfer from the cathode to the oxidized dye. (iii) Our theoretical investigation suggests that the first mechanism is dominant. Secondly, we propose structural modifications improving the TPA-based DSSCs hole transfer efficiency and we show that an additional -CN graft on the malononitrile unit combined to the functionalisation of the TPA moieties by -OMe groups (to give P-1b) should significantly improve the key parameters related to the electron injection. Indeed, for P-1b, we have noticed an increase of both the RLHE factor (0.907) and the injection driving force (-0.33 eV). This dye is therefore expected to be a very promising molecule in the p-type DSSC field.

Place, publisher, year, edition, pages
2011. Vol. 4, no 11, 4537-4549 p.
Keyword [en]
DENSITY-FUNCTIONAL THEORY, DONOR-ACCEPTOR SYSTEMS, EXCITED-STATE, DYE SENSITIZATION, CHARGE-TRANSFER, ENERGY-TRANSFER, ORGANIC-DYES, TD-DFT, PHOTOELECTROCHEMICAL PROPERTIES, ABSORPTION-SPECTRA
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-47967DOI: 10.1039/c1ee01638eISI: 000296248100017Scopus ID: 2-s2.0-80055052197OAI: oai:DiVA.org:kth-47967DiVA: diva2:457239
Note
QC 20111117Available from: 2011-11-17 Created: 2011-11-15 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hagfeldt, Anders
By organisation
Chemistry
In the same journal
Energy & Environmental Science
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf