Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aspects of Using Active Vertical Secondary Suspension to Improve Ride Comfort
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
(English)In: Proceedings of the Institution of mechanical engineers. Part F, journal of rail and rapid transit, ISSN 0954-4097, E-ISSN 2041-3017Article in journal (Other academic) Submitted
Abstract [en]

This paper presents various aspects of using active vertical secondary suspension in arail vehicle to improve ride comfort. Dynamic control of the vertical and roll modes ofthe carbody is achieved by means of actuators replacing the conventional vertical dampersin the secondary suspension. Active damping improves vertical ride comfort, compared toa passive system. Besides dynamic control, the actuators are able to generate quasi-staticroll control between the carbody and bogies in curves. This allows for higher speeds incurves, without negatively affecting ride comfort. Furthermore, the anti-roll bar is removedto reduce the number of components.

National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-48821OAI: oai:DiVA.org:kth-48821DiVA: diva2:458628
Funder
TrenOp, Transport Research Environment with Novel Perspectives
Note

QCR 20161212

Available from: 2011-11-23 Created: 2011-11-23 Last updated: 2017-12-08Bibliographically approved
In thesis
1. On Active Secondary Suspension in Rail Vehicles to Improve Ride Comfort
Open this publication in new window or tab >>On Active Secondary Suspension in Rail Vehicles to Improve Ride Comfort
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

One way to make rail vehicles a competitive means of transportation is to increase running speed. However, higher speeds usually generate increased forces and accelerations on the vehicle, which have a negative effect on ride comfort. With conventional passive suspension, it may be difficult to maintain acceptable passenger comfort. Therefore, active technology in the secondary suspension can be implemented to improve, or at least maintain, ride comfort at increased vehicle speeds or when track conditions are unfavourable.

This thesis describes the development of an active secondary suspension concept to improve ride comfort in a high-speed train. Firstly, an active lateral secondary suspension system (ALS) was developed, including dynamic control of the lateral and yaw modes of the carbody. Furthermore, quasi-static lateral carbody control was included in the suspension system in order to laterally centre the carbody above the bogies in curves at high track plane acceleration and hence to avoid bumpstop contact. By means of simulations and on-track tests, it is shown that the ALS system can offer significant lateral ride comfort improvements compared to a passive system.

Two different control strategies have been studied—the relatively simple sky-hook damping and the multi-variable H∞ control—using first a quarter-car and then a full-scale vehicle model. Simulation results show that significant ride comfort improvements can be achieved with both strategies compared to a passive system. Moreover, H∞ control in combination with the carbody centring device is better at reducing the relative lateral displacement in transition curves compared to sky-hook damping.

Secondly, an active vertical secondary suspension system (AVS) was developed, using simulations. Dynamic control of the vertical and roll modes of the carbody, together with quasi-static roll control of the carbody, show significant vertical ride comfort improvements and allow higher speeds in curves. Further, the AVS system compensates for negative ride comfort effects if the structural stiffness of the carbody is reduced and if the vertical air spring stiffness is increased.

Finally, the two active suspension systems (ALS and AVS) were combined in simulations. The results show that both lateral and vertical ride comfort is improved with the active suspension concept at a vehicle speed of 250 km/h, compared to the passive system at 200 km/h. Further, active suspension in one direction does not affect the other direction. The ALS system has been included in two recent orders comprising more than 800 cars.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. 36 p.
Series
Trita-AVE, ISSN 1651-7660 ; 2011:79
Keyword
rail vehicle, active secondary suspension, ride comfort, sky-hook damping, H∞ control, multi-body simulations, on-track tests
National Category
Vehicle Engineering
Research subject
Järnvägsgruppen - Gröna tåget; Järnvägsgruppen - Fordonsteknik
Identifiers
urn:nbn:se:kth:diva-49880 (URN)978-91-7501-155-4 (ISBN)
Public defence
2011-12-16, E2, Lindstedtsvägen 3, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Gröna Tåget
Note
QC 20111205Available from: 2011-12-05 Created: 2011-11-30 Last updated: 2012-03-21Bibliographically approved

Open Access in DiVA

No full text

By organisation
Rail VehiclesThe KTH Railway Group
In the same journal
Proceedings of the Institution of mechanical engineers. Part F, journal of rail and rapid transit
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf