Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cohomology of local systems on loci of d-elliptic Abelian surfaces
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2013 (English)In: The Michigan mathematical journal, ISSN 0026-2285, E-ISSN 1945-2365, Vol. 62, no 4, 705-720 p.Article in journal (Refereed) Published
Abstract [en]

We consider the loci of d-elliptic curves in $M_2$, and corresponding loci of d-elliptic surfaces in $A_2$. We show how a description of these loci as quotients of a product of modular curves can be used to calculate cohomology of natural local systems on them, both as mixed Hodge structures and $\ell$-adic Galois representations. We study in particular the case d=2, and compute the Euler characteristic of the moduli space of n-pointed bi-elliptic genus 2 curves in the Grothendieck group of Hodge structures.

Place, publisher, year, edition, pages
2013. Vol. 62, no 4, 705-720 p.
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:kth:diva-49336DOI: 10.1307/mmj/1387226161ISI: 000330420800003Scopus ID: 2-s2.0-84892168133OAI: oai:DiVA.org:kth-49336DiVA: diva2:459532
Note

QC 20140227. Updated from manuscript to article in journal.

Available from: 2011-11-25 Created: 2011-11-25 Last updated: 2017-12-08Bibliographically approved
In thesis
1. Topology of moduli spaces and operads
Open this publication in new window or tab >>Topology of moduli spaces and operads
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. vii, 45 p.
Series
Trita-MAT. MA, ISSN 1401-2278 ; 13:02
National Category
Geometry
Identifiers
urn:nbn:se:kth:diva-122389 (URN)978-91-7501-759-4 (ISBN)
Public defence
2013-05-31, Sal E2, Lindstedtsvägen 3, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20130520

Available from: 2013-05-20 Created: 2013-05-20 Last updated: 2013-05-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusFull-text in arXiv

Search in DiVA

By author/editor
Petersen, Dan
By organisation
Mathematics (Div.)
In the same journal
The Michigan mathematical journal
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf