Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Iterative encoder-controller design based on approximate dynamic programming
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-7926-5081
2010 (English)In: IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2010Conference paper, Published paper (Refereed)
Abstract [en]

In this paper, we study the iterative optimization of the encoder-controller pair for closed-loop control of a multi-dimensional plant over a noisy discrete memoryless channel. With the objective to minimize the expected linear quadratic cost over a finite horizon, we propose a joint design of the sensor measurement quantization, channel error protection, and optimal controller actuation. It was shown in our previous work that despite this optimization problem is known to be hard in general, an iterative design procedure can be derived to obtain a local optimal solution. However, in the vector case, optimizing the encoder for a fixed controller is in general not practically feasible due to the curse of dimensionality. In this paper, we propose a novel approach that uses the approximate dynamic programming (ADP) to implement a computationally feasible encoder updating policy with promising performance. Especially, we introduce encoder updating rules adopting the rollout approach. Numerical experiments are carried out to demonstrate the performance obtained by employing the proposed iterative design procedure and to compare it with other relevant schemes.

Place, publisher, year, edition, pages
2010.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-50112DOI: 10.1109/SPAWC.2010.5670879Scopus ID: 2-s2.0-78751563856OAI: oai:DiVA.org:kth-50112DiVA: diva2:461037
Conference
2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2010. Marrakech. 20 June 2010 - 23 June 2010
Note

QC 20111205

Available from: 2011-12-01 Created: 2011-12-01 Last updated: 2016-05-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Skoglund, Mikael

Search in DiVA

By author/editor
Bao, LeiShirazinia, AmirpashaSkoglund, Mikael
By organisation
Communication TheoryACCESS Linnaeus Centre
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 76 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf