Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical Study of a Carbon Dioxide Double Loop System
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
King Mongkut’s University of Technology Thonburi, Dept. of Chemical Engineering,Bangkok, Thailand.
2007 (English)Conference paper, Published paper (Refereed)
Abstract [en]

In the current research, a carbon dioxide double loop system is proposed. The system contains of two sub systems: a CO2power subsystem and a CO2refrigeration subsystem. The power subsystem is able to utilize the energy from the low-grade heat source to produce power. The power is then transferred to the refrigeration subsystem, partly or totally covering the power consumption of the compressor. Furthermore, it is also possible to take advantage of the temperature glides of both subsystems’ heat rejection processes to produce hot water. Engineering Equation Solver (EES) is employed to analyze the system performance. The results show that the proposed system is a very promising way to provide cooling, heating and hot water in a more efficient way comparing to traditional systems.

Place, publisher, year, edition, pages
2007.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-50264OAI: oai:DiVA.org:kth-50264DiVA: diva2:461428
Conference
International Congress of Refrigeration 2007, Beijing
Note
QC 2011206Available from: 2011-12-06 Created: 2011-12-04 Last updated: 2011-12-07Bibliographically approved
In thesis
1. Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 transcritical power cycle study
Open this publication in new window or tab >>Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 transcritical power cycle study
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades).

Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozonedepleting potential (ODP) and low global warming potential (GWP). It is also inexpensive, non‐explosive, non‐flammable and abundant in nature. At the same time, CO2 has advantages in use as a working fluid in low‐grade heat resource recovery and energy conversion from waste heat, mainly because it can create a better matching to the heat source temperature profile in the supercritical region to reduce the irreversibility during the heating process. Nevertheless, the research in such applications is very limited.

This study investigates the potential of using carbon dioxide as a working fluid in power cycles for low‐grade heat source/waste heat recovery.

At the beginning of this study, basic CO2 power cycles, namely carbon dioxide transcritical power cycle, carbon dioxide Brayton cycle and carbon dioxide cooling and power combined cycle were simulated and studied to see their potential in different applications (e.g. low‐grade heat source applications, automobile applications and heat and power cogeneration applications). For the applications in automobile industries, low pressure drop on the engine’s exhaust gas side is crucial to not reducing the engine’s performance. Therefore, a heat exchanger with low‐pressure drop on the secondary side (i.e. the gas side) was also designed, simulated and tested with water and engine exhaust gases at the early stage of the study (Appendix 2).

The study subsequently focused mainly on carbon dioxide transcritical power cycle, which has a wide range of applications. The performance of the carbon dioxide transcritical power cycle has been simulated and compared with the other most commonly employed power cycles in lowgrade heat source utilizations, i.e. the Organic Rankin Cycle (ORC). Furthermore, the annual performance of the carbon dioxide transcritical power cycle in utilizing the low‐grade heat source (i.e. solar) has also been simulated and analyzed with dynamic simulation in this work.

Last but not least, the matching of the temperature profiles in the heat exchangers for CO2 and its influence on the cycle performance have also been discussed. Second law thermodynamic analyses of the carbon dioxide transcritical power systems have been completed.

The simulation models have been mainly developed in the software known as Engineering Equation Solver (EES)1 for both cycle analyses and computer‐aided heat exchanger designs. The model has also been connected to TRNSYS for dynamic system annual performance simulations. In addition, Refprop 7.02 is used for calculating the working fluid properties, and the CFD tool (COMSOL) 3 has been employed to investigate the particular phenomena influencing the heat exchanger performance.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology(KTH), 2011. xxii, 128 p.
Series
Trita-REFR, ISSN 1102-0245 ; 11:03
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-50261 (URN)978-91-7501-187-5 (ISBN)
Public defence
2011-12-09, M2, Brinellvägen 64, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20111205Available from: 2011-12-05 Created: 2011-12-04 Last updated: 2011-12-09Bibliographically approved

Open Access in DiVA

fulltext(83 kB)350 downloads
File information
File name FULLTEXT01.pdfFile size 83 kBChecksum SHA-512
879d7f1442f8753447acee1c003f3cb87de26e705fc335967be3a8ce29eff7559de89243335d7afe67340d0e4d0457c99d29c3eb2d40fe26876bbdb9602cceb8
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Chen, YangLundqvist, Per
By organisation
Applied Thermodynamics and Refrigeration
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 350 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 251 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf