Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting the transport and fate of Escherichia coli in unsaturated sand filters
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Management and Assessment.ORCID iD: 0000-0002-5290-5704
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Management and Assessment.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Management and Assessment.
2011 (English)In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009Article in journal (Other academic) Submitted
Place, publisher, year, edition, pages
2011.
Keyword [en]
bacterial transport modeling, unsaturated zone, porous media filtration, retention, Escherichia coli
National Category
Water Treatment
Identifiers
URN: urn:nbn:se:kth:diva-50890OAI: oai:DiVA.org:kth-50890DiVA: diva2:462983
Note
QS 20120316Available from: 2011-12-08 Created: 2011-12-08 Last updated: 2017-12-08Bibliographically approved
In thesis
1. Transport and Fate of Escherichia coli in Unsaturated Porous Media
Open this publication in new window or tab >>Transport and Fate of Escherichia coli in Unsaturated Porous Media
2011 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The unsaturated zone could provide an effective barrier against pathogenic microbes entering the groundwater. Knowledge relating to microbial fate in this zone is therefore important for increased understanding of groundwater vulnerability. This thesis examines the published literature that is related to the transport, retention and survival processes that apply to the fecal indicator bacterium Escherichia coli in unsaturated porous media. The main focus concerns the research findings under steady-state flow in homogeneous filter media, and under unfavorable attachment conditions, which are the most common in the natural environment. Experimental results in the literature for the pore-, column- and field-scale are examined and compared to commonly applied theories and modeling approaches. An analysis of the main factors that influence attenuation and biofilm formation is provided. Further, the findings are illustrated in a model of an unplanted, vertical flow constructed wetland. The results indicate that retention at the solid-air-water interface is a major attenuation process. In addition, they suggest that the flow velocity (as dependent on the grain size and the saturation) is a key influencing factor. However, it has not yet been established how the research findings relating to the main processes and influencing factors can be incorporated into predictive models; in the literature, a multitude of models have been proposed and alternative theories could describe the same observation. In this study, the transport and fate of Escherichia coli in different sand filters is, therefore, modeled using various literature models - derived under similar experimental conditions - in order to assess the possibility to compare and generalize the equations, evaluate their implications considering the different saturation settings and filter depths, and to define the spectra of the reduction efficiencies. It is discovered that the bacterial attenuation behaviors vary largely. This calls for clarification regarding the underlying processes. Future research is also recommended to include the ef-fects of structured filter media and sudden changes in the flow rate.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. x, 47 p.
Series
Trita-LWR. LIC, ISSN 1650-8629 ; 2059
Keyword
Contaminant transport modeling, Bacterial fate, Unsaturated zone, Retention, Straining, Escherichia coli
National Category
Water Treatment
Identifiers
urn:nbn:se:kth:diva-50647 (URN)978-91-7501-209-4 (ISBN)
Presentation
2011-12-15, V3, KTH, Teknikringen 72, Stockholm, 13:15 (English)
Opponent
Supervisors
Note
QC 20111208Available from: 2011-12-08 Created: 2011-12-07 Last updated: 2011-12-08Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Engström, Emma

Search in DiVA

By author/editor
Engström, EmmaThunvik, RogerBalfors, Berit
By organisation
Environmental Management and Assessment
In the same journal
Journal of Contaminant Hydrology
Water Treatment

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 188 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf