Change search
ReferencesLink to record
Permanent link

Direct link
The customer perspective of the electric vehicles role on the electricity market
KTH, School of Electrical Engineering (EES), Electric Power Systems.
KTH, School of Electrical Engineering (EES), Electric Power Systems.ORCID iD: 0000-0002-8189-2420
2011 (English)In: 2011 8th International Conference on the European Energy Market (EEM), Piscataway: IEEE , 2011, 141-148 p.Conference paper (Refereed)
Abstract [en]

Recent studies have investigated the impact and effects of using batteries in connected electric vehicles as ancillary services to the electricity grid. A common assumption made is that all parked cars are connected to the grid and available for recharging or discharging. However, the level of flexibility of people’s behavior is important and will affect the potential of using car batteries for regulation power. How customers will react if they are expected to recharge or discharge whenever the electric system need it, will depend on incentives and peoples willingness to adapt. This paper reviews existing research regarding electric vehicles and their interaction with the electric power system and investigate conditions for a potential use of the batteries as regulation power. The customer perspective of the electric vehicle’s role on the electricity market is analyzed considering participation in the control power market.

Place, publisher, year, edition, pages
Piscataway: IEEE , 2011. 141-148 p.
Keyword [en]
car batteries;control power market;customer perspective;electric power system;electric vehicles role;electricity grid;electricity market;regulation power;electric vehicles;power grids;power markets
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-51342DOI: 10.1109/EEM.2011.5952997ScopusID: 2-s2.0-80052117040ISBN: 978-161284284-4OAI: diva2:463912
2011 8th International Conference on the European Energy Market, EEM 11. Zagreb. 25 May 2011 - 27 May 2011
QC 20111213Available from: 2011-12-12 Created: 2011-12-12 Last updated: 2014-09-24Bibliographically approved
In thesis
1. Electric Vehicle Charging Modeling
Open this publication in new window or tab >>Electric Vehicle Charging Modeling
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With an electrified passenger transportation fleet, carbon dioxide emissions could be reduced significantly depending on the electric power production mix. Increased electric power consumption due to electric vehicle charging demands of electric vehicle fleets may be met by increased amount of renewable power production in the electrical systems. With electric vehicle fleets in the transportation system there is a need for establishing an electric vehicle charging infrastructure that distributes this power to the electric vehicles. Depending on the amount of electric vehicles in the system and the charging patterns, electric vehicle integration creates new quantities in the overall load profile that may increase the load peaks. The electric vehicle charging patterns are stochastic since they are affected by the travel behavior of the driver and the charging opportunities which implies that an electric vehicle introduction also will affect load variations. Increased load variation and load peaks may create a need for upgrades in the grid infrastructure to reduce losses, risks for overloads or damaging of components. However, with well-designed incentives for electric vehicle users and electric vehicle charging, the electric vehicles may be used as flexible loads that can help mitigate load variations and load peaks in the power system.

The aim with this doctoral thesis is to investigate and quantify the impact of electric vehicle charging on load profiles and load variations. Three key factors are identified when considering the impact of electric vehicle charging on load profiles and load variations. The key factors are: The charging moment, the charging need and the charging location. One of the conclusions in this thesis is that the level of details and the approach to model these key factors impact the estimations of the load profiles. The models that take into account a high level of mobility details will be able to create a realistic estimation of a future uncontrolled charging behavior, enabling for more accurate estimates of the impact on load profiles and the potential of individual charging strategies and external charging strategies. The thesis reviews and categorizes electric vehicle charging models in previous research, and furthermore, introduces new electric vehicle charging models to estimate the charging impact based on charging patterns induced by passenger car travel behavior. The models mainly consider EVC related to individual car travel behavior and induced charging needs for plug-in-hybrid electric vehicles. Moreover, the thesis comments on dynamic electric vehicle charging along electrified roads and also on individual charging strategies.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. viii, 88 p.
TRITA-EE, ISSN 1653-5146 ; 2014:044
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
urn:nbn:se:kth:diva-152237 (URN)978-91-7595-255-0 (ISBN)
Public defence
2014-10-13, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)

QC 20140924

Available from: 2014-09-24 Created: 2014-09-24 Last updated: 2014-09-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Grahn, PiaSöder, Lennart
By organisation
Electric Power Systems
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 134 hits
ReferencesLink to record
Permanent link

Direct link