Change search
ReferencesLink to record
Permanent link

Direct link
Modeling Study of Woody Biomass: Interactions of Cellulose, Hemicellulose, and Lignin
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.ORCID iD: 0000-0002-1837-5439
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
2011 (English)In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 25, no 10, 4786-4795 p.Article in journal (Refereed) Published
Abstract [en]

Lignocellulosic biomass pretreatment and the subsequent thermal conversion processes to produce solid, liquid, and gas biofuels are attractive solutions for today's energy challenges. The structural study of the main components in biomass and their macromolecular complexes is an active and ongoing research topic worldwide. The interactions among the three main components, cellulose, hemicellulose, and lignin, are studied in this paper using electronic structure methods, and the study includes examining the hydrogen bond network of cellulose-hemicellulose systems and the covalent bond linkages of hemicellulose-lignin systems. Several methods (semiempirical, Hartree-Fock, and density functional theory) using different basis sets were evaluated. It was shown that theoretical calculations can be used to simulate small model structures representing wood components. By comparing calculation results with experimental data, it was concluded that B3LYP/6-31G is the most suitable basis set to describe the hydrogen bond system and B3LYP/6-31G(d,p) is the most suitable basis set to describe the covalent system of woody biomass. The choice of unit model has a much larger effect on hydrogen bonding within cellulose-hemicellulose system, whereas the model choice has a minimal effect on the covalent linkage in the hemicellulose-lignin system.

Place, publisher, year, edition, pages
2011. Vol. 25, no 10, 4786-4795 p.
National Category
Materials Engineering
URN: urn:nbn:se:kth:diva-51431DOI: 10.1021/ef201097dISI: 000296212900060ScopusID: 2-s2.0-80055053770OAI: diva2:464458
Swedish Research Council
QC 20111213Available from: 2011-12-13 Created: 2011-12-12 Last updated: 2013-03-27Bibliographically approved
In thesis
1. Micro-reaction Mechanism Study of the Biomass Thermal Conversion Process using Density Functional Theory
Open this publication in new window or tab >>Micro-reaction Mechanism Study of the Biomass Thermal Conversion Process using Density Functional Theory
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biomass, or bio-energy, is one of the most important alternative energies because of environmental concerns and the future shortage of fossil fuels. Multi-scaled bioenergy studies have been performed in the division of Energy and Furnace Technology, which included studies of macroscopic systems such as systems and reactors, modeling of computational fluid dynamics (CFD), and atomic/molecular level studies. The present thesis focus on the atomic/molecular level that based on quantum chemistry methods.

The microscopic structure study of biomass is the first and an important step for the investigation of the biomass thermal conversion mechanism. Cellulose, hemicellulose, and lignin are the three most important components for biomass. The atomic interactions among these three main components were studied, including the hydrogen bond linkages between cellulose and hemicellulose, and the covalent bond linkages between hemicellulose and lignin.

The decomposition of biomass is complicated and includes cellulose decomposition, hemicellulose decomposition, and lignin decomposition. As the main component of biomass, the mechanism of cellulose pyrolysis mechanism was focused on in this thesis. The study of this mechanism included an investigation of the pathways from cellulose to levoglucosan then to lower-molecular-weight species. Three different pathways were studied for the formation of levoglucosan from cellulose, and three different pathways were studied for the levoglucosan decomposition. The thermal properties for every reactant, intermediate, and product were obtained. The kinetics parameters (rate constant, pre-exponential factor, and activation energy) for every elementary step and pathway were calculated. For the formation of levoglucosan, the levoglucosan chain-end mechanism is the favored pathway due to the lower energy barrier; for the subsequent levoglucosan decomposition process, dehydration is a preferred first step and C-C bond scission is the most difficult pathway due to the strength of the C-C bonds.

The biomass gasification process includes pyrolysis, char gasification, and a gas-phase reaction; Char gasification is considered to be the rate-controlling step because of its slower reaction rate. Char steam gasification can be described as the adsorption of steam on the char surface to form a surface complex, which may transfer to another surface complex, which then desorbs to give the gaseous products (CO and H2) and the solid product of the remaining char. The influences of several radicals (O, H, and OH) and molecules (H2 and O2) on steam adsorption were investigated. It was concluded that the reactivity order for these particles adsorbed onto both zigzag and armchair surfaces is O > H2 > H > OH > O2. For water adsorbs on both zigzag and armchair carbon surfaces, O and OH radicals accelerate water adsorption, but H, O2, and H2 have no significant influence on water adsorption.

It was also shown that quantum chemistry (also known as molecular modeling) can be used to investigate the reaction mechanism of a macroscopic system. Detailed atomic/molecular descriptions can provide further understanding of the reaction process and possible products.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. x, 58 p.
biomass thermal conversion, cellulose pyrolysis, char steam gasification, adsorption, interaction, mechanism, quantum chemistry, density functional theory
National Category
urn:nbn:se:kth:diva-120071 (URN)978-91-7501-656-6 (ISBN)
Public defence
2013-04-22, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)

QC 20130327

Available from: 2013-03-27 Created: 2013-03-27 Last updated: 2013-03-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhang, XiaoleiYang, WeihongBlasiak, Wlodzimierz
By organisation
Materials Science and EngineeringEnergy and Furnace Technology
In the same journal
Energy & Fuels
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 154 hits
ReferencesLink to record
Permanent link

Direct link