Change search
ReferencesLink to record
Permanent link

Direct link
On the convergence of multigrid methods  for flow problems
KTH, Superseded Departments, Numerical Analysis and Computer Science, NADA.
KTH, Superseded Departments, Numerical Analysis and Computer Science, NADA.
1999 (English)In: Electronic Transactions on Numerical Analysis, ISSN 1068-9613, Vol. 8, 46-87 p.Article in journal (Refereed) Published
Abstract [en]

We prove two theorems on the residual damping in multigrid methods when solving convection dominated diffusion equations and shock wave problems, discretized by the streamline diffusion finite element method. The first theorem shows that a V-cycle, including sufficiently many pre and post smoothing steps, damps the residual in LIloc for a constant coefficient convection problem with small diffusion in two space dimensions, without the assumption that the coarse grid is sufficiently fine. The proof is based on discrete Green's functions for the smoothing and correction operators on a uniform unbounded mesh aligned with the characteristic. The second theorem proves a similar result for a certain continuous version of a two grid method, with Isotropic artificial diffusion, applied to a two dimensional Burgers shock wave problem. We also present numerical experiments that verify the residual damping dependence on the equation, the choice of artificial diffusion and the number of smoothing steps. In particular numerical experiments show improved convergence of the multigrid method, with damped Jacobi smoothing steps, for the compressible Navier-Stokes equations in two space dimensions by using the theoretically suggested exponential increase of the number of smoothing steps on coarser meshes, as compared to the same amount of work with constant number of smoothing steps on each level.

Place, publisher, year, edition, pages
1999. Vol. 8, 46-87 p.
Keyword [en]
Conservation laws, Convection-diffusion, Convergence, Green's function, Multigrid methods, Shock waves
National Category
Natural Sciences
URN: urn:nbn:se:kth:diva-51573OAI: diva2:464627
Qc 20111214Available from: 2011-12-13 Created: 2011-12-13 Last updated: 2012-02-27Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Persson, IngemarSzepessy, Anders
By organisation
Numerical Analysis and Computer Science, NADA
In the same journal
Electronic Transactions on Numerical Analysis
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 8 hits
ReferencesLink to record
Permanent link

Direct link