Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A finite volume stability result for the convection operator in compressible flows. . . and some finite element applications
Institut de Sûreté et de Radioprotection Nucléaire. (DPAM/SEMIC/LIMSI)
Institut de Sûreté et de Radioprotection Nucléaire. (DPAM/SEMIC/LIMSI)
Institut de Sûreté et de Radioprotection Nucléaire. (DPAM/SEMIC/LIMSI)
Institut de Sûreté et de Radioprotection Nucléaire.
Show others and affiliations
2008 (English)In: Finite Volumes for Complex Applications V: Problems & Perspectives / [ed] Robert Eymard and Jean-Marc Hérard, Hermes Science Publications, 2008, 185-192 p.Conference paper, Published paper (Refereed)
Abstract [en]

In this paper, we build a L2-stable discretization of the non-linear convection termin Navier-Stokes equations for non-divergence-free flows, for non-conforming low order Stokesfinite elements. This discrete operator is obtained by a finite volume technique, and its stability relies on a result interesting for its own sake: the L2-stability of the natural finite volume convection operator in compressible flows, under some compatibility condition with the discrete mass balance. Then, this analysis is used to derive a boundary condition to cope with physical situations where the velocity cannot be prescribed on inflow parts of the boundary of the computational domain. We finally collect these ingredients in a pressure correction scheme for low Mach number flows, and assess the capability of the resulting algorithm to compute a natural convection flow with artificial (open) boundaries.

Place, publisher, year, edition, pages
Hermes Science Publications, 2008. 185-192 p.
Keyword [en]
Compressible flows, finite volumes, finite elements, convection, stability
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-52385ISBN: 9781848210356 (print)OAI: oai:DiVA.org:kth-52385DiVA: diva2:466355
Conference
5th International Symposium on Finite Volumes for Complex Applications
Note
QC 20111220Available from: 2011-12-15 Created: 2011-12-15 Last updated: 2011-12-20Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.latp.univ-mrs.fr/fvca5/articles/article99105216_80-ANSANAY-ALEX_guillaume_v5.pdf

Search in DiVA

By author/editor
Larcher, Aurélien
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf