Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Power Modular Multilevel Converters With SiC JFETs
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.ORCID iD: 0000-0001-7922-3407
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
Show others and affiliations
2012 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 27, no 1, 28-36 p.Article in journal (Refereed) Published
Abstract [en]

This paper studies the possibility of building a modular multilevel converter (M2C) using silicon carbide (SiC) switches. The main focus is on a theoretical investigation of the conduction losses of such a converter and a comparison to a corresponding converter with silicon-insulated gate bipolar transistors. Both SiC BJTs and JFETs are considered and compared in order to choose the most suitable technology. One of the submodules of a down-scaled 3 kVA prototype M2C is replaced with a submodule with SiC JFETs without antiparallel diodes. It is shown that the diode-less operation is possible with the JFETs conducting in the negative direction, leaving the possibility to use the body diode during the switching transients. Experimental waveforms for the SiC submodule verify the feasibility during normal steady-state operation. The loss estimation shows that a 300 MW M2C for high-voltage direct current transmission would potentially have an efficiency of approximately 99.8% if equipped with future 3.3 kV 1.2 kA SiC JFETs.

Place, publisher, year, edition, pages
IEEE Press, 2012. Vol. 27, no 1, 28-36 p.
Keyword [en]
Diodeless operation, high voltage directcurrent transmission, modular multilevel converter, SiC JFETs, silicon carbide
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-52687DOI: 10.1109/TPEL.2011.2155671ISI: 000298048500001Scopus ID: 2-s2.0-83655192819OAI: oai:DiVA.org:kth-52687DiVA: diva2:467521
Note
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. QC 20111220Available from: 2011-12-20 Created: 2011-12-19 Last updated: 2017-12-08Bibliographically approved
In thesis
1. On Gate Drivers and Applications of Normally-ON SiC JFETs
Open this publication in new window or tab >>On Gate Drivers and Applications of Normally-ON SiC JFETs
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, various issues regarding normally-ON silicon carbide (SiC)Junction Field-Effect Transistors (JFETs) are treated. Silicon carbide powersemiconductor devices are able to operate at higher switching frequencies,higher efficiencies, and higher temperatures compared to silicon counterparts.From a system perspective, these three advantages of silicon carbide can determinethe three possible design directions: high efficiency, high switchingfrequency, and high temperature.The structure designs of the commercially-available SiC power transistorsalong with a variety of macroscopic characteristics are presented. Apart fromthe common design and performance problems, each of these devices suffersfrom different issues and challenges which must be dealt with in order to pavethe way for mass production. Moreover, the expected characteristics of thefuture silicon carbide devices are briefly discussed. The presented investigationreveals that, from the system point-of-view, the normally-ON JFET isone of the most challenging silicon carbide devices. There are basically twoJFET designs which were proposed during the last years and they are bothconsidered.The state-of-the-art gate driver for normally-ON SiC JFETs, which wasproposed a few years ago is briefly described. Using this gate driver, theswitching performance of both Junction Field-Effect Transistor designs wasexperimentally investigated.Considering the current development state of the available normally-ONSiC JFETs, the only way to reach higher current rating is to parallel-connecteither single-chip discrete devices or to build multichip modules. Four deviceparameters as well as the stray inductances of the circuit layout might affectthe feasibility of parallel connection. The static and dynamic performance ofvarious combinations of parallel-connected normally-ON JFETs were experimentallyinvestigated using two different gate-driver configurations.A self-powered gate driver for normally-ON SiC JFETs, which is basicallya circuit solution to the “normally-ON problem” is also shown. This gatedriver is both able to turn OFF the shoot-through current during the startupprocess, while it also supplies the steady-state power to the gate-drivecircuit. From experiments, it has been shown that in a half-bridge converterconsisting of normally-ON SiC JFETs, the shoot-through current is turnedOFF within approximately 20 μs.Last but not least, the potential benefits of employing normally-ON SiCJFETs in future power electronics applications is also presented. In particular,it has been shown that using normally-ON JFETs efficiencies equal 99.8% and99.6% might be achieved for a 350 MW modular multilevel converter and a40 kVA three-phase two-level voltage source converter, respectively.Conclusions and suggestions for future work are given in the last chapterof this thesis.

Abstract [sv]

I denna avhandling behandlas olika aspekter av normally–ON junction–field–effect–transistorer (JFETar) baserade på kiselkarbid (SiC). Effekthalvledarkomponenteri SiC kan arbeta vid högre switchfrekvens, högre verkningsgradoch högre temperatur än motsvarigheterna i kisel. Ur ett systemperspektivkan de tre nämnda fördelarna användas i omvandlarkonstruktionen för attuppnå antingen hög verkningsgrad, hög switchfrekvens eller hög temperaturtålighet.Såväl halvledarstrukturen som de makroskopiska egenskaperna för kommersiellttillgängliga SiC–transistorer presenteras. Bortsett från de vanligakonstruktions–och prestandaproblemen lider de olika komponenterna av ettantal tillkortakommanden som måste övervinnas för att bana väg för massproduktion.Även framtida SiC–komponenter diskuteras.Ur ett systemperspektiv är normally-ON JFETen en av de mest utmanandeSiC-komponenterna. De två varianter av denna komponent som varittillgängliga de senaste åren har båda avhandlats.State–of–the–art–drivdonet för normally-ON JFETar som presenteradesför några år sedan beskrivs i korthet. Med detta drivdon undersöks switchegenskapernaför båda JFET-typerna experimentellt.Vid beaktande av det aktuella utvecklingsstadiet av de tillgängliga normally–ON JFETarna i SiC, är det möjligt att uppnå höga märkströmmar endastom ett antal single–chip–komponenter parallellkopplas eller om multichipmodulerbyggs. Fyra komponentparametrar samt strö-induktanser för kretsenkan förutses påverka parallellkopplingen. De statiska och dynamiska egenskapernaför olika kombinationer av parallellkopplade normally-ON JFETarundersöks experimentellt med två olika gate–drivdonskonfigurationer.Ett självdrivande gate-drivdon för normally-ON JFETar presenteras också.Drivdonet är en kretslösning till “normally–ON–problemet”. Detta gatedrivdonkan både stänga av kortslutningsströmmen vid uppstart och tillhandahållaströmförsörjning vid normal drift. Med hjälp av en halvbrygga medkiselkarbidbaserade normally–ON JFETar har det visats att kortslutningsströmmenkan stängas av inom cirka 20 μs.Sist, men inte minst, presenteras de potentiella fördelarna med användningenav SiC-baserade normally-ON JFETar i framtida effektelektroniskatillämpningar. Speciellt visas att verkningsgrader av 99.8% respektive 99.5%kan uppnås i fallet av en 350 MW modular multilevel converter och i en40 kVA tvånivåväxelriktare. Sista kaplitet beskriver slutsatser och föreslagetframtida arbete.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. x, 102 p.
Series
Trita-EE, ISSN 1653-5146 ; 2013:28
Keyword
Silicon Carbide, Normally-ON Junction Field-Effect Transistors (JFETs), Gate-Drive Circuits, Protection circuits, High-Efficiency Converters.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Järnvägsgruppen - Elsystem
Identifiers
urn:nbn:se:kth:diva-122679 (URN)978-91-7501-799-0 (ISBN)
Public defence
2013-06-14, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20130527

Available from: 2013-05-27 Created: 2013-05-26 Last updated: 2013-05-27Bibliographically approved
2. High-Efficiency SiC Power Conversion: Base Drivers for Bipolar Junction Transistors and Performance Impacts on Series-Resonant Converters
Open this publication in new window or tab >>High-Efficiency SiC Power Conversion: Base Drivers for Bipolar Junction Transistors and Performance Impacts on Series-Resonant Converters
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis aims to bring an understanding to the silicon carbide (SiC) bipolar junction transistor (BJT). SiC power devices are superior to the silicon IGBT in several ways. They are for instance, able to operate with higher efficiency, at higher frequencies, and at higher junction temperatures. From a system point of view the SiC power device could decrease the cost and complexity of cooling, reduce the size and weight of the system, and enable the system to endure harsher environments.

The three main SiC power device designs are discussed with a focus on the BJT. The SiC BJT is compared to the SiC junction field-effect transistor (JFET) and the metal-oxide semiconductor field-effect transistor (MOSFET). The potential of employing SiC power devices in applications, ranging from induction heating to high-voltage direct current (HVDC), is presented.

The theory behind the state-of-the-art dual-source (2SRC) base driver that was presented by Rabkowski et al. a few years ago is described. This concept of proportional base drivers is introduced with a focus on the discretized proportional base drivers (DPBD). By implementing the DPBD concept and building a prototype it is shown that the steady-state consumption of the base driver can be reduced considerably.

 The aspects of the reverse conduction of the SiC BJT are presented. It is shown to be of importance to consider the reduced voltage drop over the base-emitter junction.

Last the impact of SiC unipolar and bipolar devices in series-resonant (SLR) converters is presented. Two full-bridges are designed and constructed, one with SiC MOSFETs utilizing the body diode for reverse conduction during the dead-time, and the second with SiC BJTs with anti-parallel SiC Schottky diodes. It is found that the SiC power devices, with their absence of tail current, are ideal devices to fully utilize the soft-switching properties that the SLR converters offer. The SiC MOSFET benefits from its possibility to utilize reverse conduction with a low voltage drop. It is also found that the size of capacitance of the snubbers can be reduced compare to state-of-the-art silicon technology. High switching frequencies of 200 kHz are possible while still keeping the losses low. A dead-time control strategy for each device is presented. The dual control (DuC) algorithm is tested with the SiC devices and compared to frequency modulation (FM).

The analytical investigations presented in this thesis are confirmed by experimental results on several laboratory prototype converters.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xiv, 71 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2015:024
Keyword
Silicon Carbide, Bipolar Junction Transistor (BJT), Resonant converter, Series-resonant converter (SLR), Base drive circuits, High- Efficiency Converters, High-Frequency Converters
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-168163 (URN)978-91-7595-601-5 (ISBN)
Public defence
2015-06-12, H1, Teknikringen 33, KTH, Stockholm, 09:45 (English)
Opponent
Supervisors
Note

QC 20150529

Available from: 2015-05-29 Created: 2015-05-27 Last updated: 2015-05-29Bibliographically approved
3. Simulation and Electrical Evaluation of 4H-SiC Junction Field Effect Transistors and Junction Barrier Schottky Diodes with Buried Grids
Open this publication in new window or tab >>Simulation and Electrical Evaluation of 4H-SiC Junction Field Effect Transistors and Junction Barrier Schottky Diodes with Buried Grids
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon carbide (SiC) has higher breakdown field strength than silicon (Si), which enables thinner and more highly doped drift layers compared to Si. Consequently, the power losses can be reduced compared to Si-based power conversion systems. Moreover, SiC allows the power conversion systems to operate at high temperatures up to 250 oC. With such expectations, SiC is considered as the material of choice for modern power semiconductor devices for high efficiencies, high temperatures, and high power densities. Besides the material benefits, the typeof the power device also plays an important role in determining the system performance.

Compared to the SiC metal-oxide semiconductor field-effect transistor (MOSFET) and bipolar junction transistor (BJT), the SiC junction field-effect transistor (JFET) is a very promising power switch, being a voltage-controlled device without oxide reliability issues. Its channel iscontrolled by a p-n junction. However, the present JFETs are not optimized yet with regard to on-state resistance, controllability of threshold voltage, and Miller capacitance.

In this thesis, the state-of-the-art SiC JFETs are introduced with buried-grid (BG) technology.The buried grid is formed in the channel through epitaxial growth and etching processes. Through simulation studies, the new concepts of normally-on and -off BG JFETs with 1200 V blocking capability are investigated in terms of static and dynamic characteristics. Additionally, two case studies are performed in order to evaluate total losses on the system level. These investigations can be provided to a power circuit designer for fully exploiting the benefit of power devices. Additionally, they can serve as accurate device models and guidelines considering the switching performance.

The BG concept utilized for JFETs has been also used for further development of SiC junctionbarrier Schottky (JBS) diodes. Especially, this design concept gives a great impact on high temperature operation due to efficient shielding of the Schottky interface from high electric fields. By means of simulations, the device structures with implanted and epitaxial p-grid formations, respectively, are compared regarding threshold voltage, blocking voltage, and maximum electric field at the Schottky interface. The results show that the device with an epitaxial grid can be more efficient at high temperatures than that with an implanted grid. To realize this concept, the device with implanted grid was optimized using simulations, fabricated and verified through experiments. The BG JBS diode clearly shows that the leakage current is four orders of magnitude lower than that of a pure Schottky diode at an operation temperature of 175 oC and 2 to 3 orders of magnitude lower than that of commercial JBS diodes.

Finally, commercialized vertical trench JFETs are evaluated both in simulations andexperiments, while it is important to determine the limits of the existing JFETs and study their performance in parallel operation. Especially, the influence of uncertain parameters of the devices and the circuit configuration on the switching performance are determined through simulations and experiments.

Abstract [sv]

Kiselkarbid (SiC) har en högre genombrottsfältstyrka än kisel, vilket möjliggör tunnare och mer högdopade driftområden jämfört med kisel. Följaktligen kan förlusterna reduceras jämfört med kiselbaserade omvandlarsystem. Dessutom tillåter SiC drift vid temperatures upp till 250 oC. Dessa utsikter gör att SiC anses vara halvledarmaterialet för moderna effekthalvledarkomponenter för hög verkningsgrad, hög temperature och hög kompakthet. Förutom materialegenskaperna är också komponenttypen avgörande för att bestämma systemets prestanda.

Jämfört med SiC MOSFETen och bipolärtransistorn i SiC är SiC JFETen en mycket lovande component, eftersom den är spänningsstyrd och saknar tillförlitlighetsproblem med oxidskikt. Dess kanal styrs an en PNövergång. Emellertid är dagens JFETar inte optimerade med hänseende till on-state resistans, styrbarhet av tröskelspänning och Miller-kapacitans.

I denna avhandling introduceras state-of-the-art SiC JFETar med buried-grid (BG) teknologi. Denna åstadkommes genom epitaxi och etsningsprocesser. Medelst simulering undersöks nya concept för normally-on och normally-off BG JFETar med blockspänningen 1200 V. Såvä statiska som dynamiska egenskper undersöks. Dessutom görs två fallstudier vad avser totalförluster på systemnivå. Dessa undersökningar kan vara värdefulla för en konstruktör för att till fullo utnyttja fördelarna av komponenterna. Dessutom kan resultaten från undersökningarna användas som komponentmodeller och anvisningar vad gäller switch-egenskaper.

BG konceptet som använts för JFETar har också använts för vidareutveckling av så kallade JBS-dioder. Speciellt ger denna konstruktion stora fördelar vid höga temperature genom en effektiv skärmning av Schottkyövergången mot höga elektriska fält. Genom simuleringar har komponentstrukturer med implanterade och epitaxiella grids jämförst med hänseende till tröskelspänning, genombrottspänning och maximalt elektriskt fält vid Schottky-övergången. Resultaten visar att den epitaxiella varianten kan vara mer effektiv än den implanterade vid höga temperaturer. För att realisera detta concept optimerades en komponent med implanterat grid med hjälp av simuleringar. Denna component tillverkades sedan och verifierades genom experiment. BG JBS-dioden visar tydligt att läckströmmen är fyra storleksordningar lägre än för en ren Schottky-diod vid 175 oC, och två till tre storleksordningar lägre än för kommersiella JBS-dioder.

Slutligen utvärderas kommersiella vertical trench-JFETar bade genom simuleringar och experiment, eftersom det är viktigt att bestämma gränserna för existerande JFETar och studera parallelkoppling. Speciellt studeras inverkan av obestämda parametrar och kretsens konfigurering på switchegenskaperna. Arbetet utförs bade genom simuleringar och experiment.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xvi, 97 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2015:025
Keyword
Silicon carbide (SiC), junction field-effect transistors (JFETs), junction barrier schottky diode (JBS), schottky barrier diode (SBD), buried-grid (BG) technology, simulation, implantation, epitaxial growth
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-173340 (URN)978-91-7595-684-8 (ISBN)
Public defence
2015-10-12, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:15 (English)
Opponent
Supervisors
Note

QC 20150915

Available from: 2015-09-15 Created: 2015-09-09 Last updated: 2015-09-15Bibliographically approved

Open Access in DiVA

fulltext(604 kB)1875 downloads
File information
File name FULLTEXT02.pdfFile size 604 kBChecksum SHA-512
7f72e2f874e3ce9dc81411378649bb4c953e5eba4386e611907b687f438ea2ae62899bff90b37f5bad9c581e49ca74ff5c13577116385881d8354a4d872f8fe3
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusIEEEXplorehttps://eeweb01.ee.kth.se/upload/publications/reports/2012/IR-EE-E2C_2012_001.pdf

Authority records BETA

Tolstoy, GeorgLim, Jang-KwonNee, Hans-Peter

Search in DiVA

By author/editor
Peftitsis, DimosthenisTolstoy, GeorgAntonopoulos, AntoniosRabkowski, JacekLim, Jang-KwonÄngquist, LennartNee, Hans-Peter
By organisation
Electrical Energy Conversion
In the same journal
IEEE transactions on power electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 1875 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 971 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf