Change search
ReferencesLink to record
Permanent link

Direct link
Green's functions for a loaded rolling tyre
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics. Eindhoven University of Technology, The Netherlands.ORCID iD: 0000-0002-3609-3005
2011 (English)In: International Journal of Solids and Structures, ISSN 0020-7683, E-ISSN 1879-2146, Vol. 48, no 25-26, 3462-3470 p.Article in journal (Refereed) Published
Abstract [en]

A new formulation to determine the unit impulse response (Green's) functions of a loaded rotating tyre in the vehicle-fixed (Eulerian) reference frame for tyre/road noise predictions is presented. The proposed formulation makes use of the set of eigenfrequencies and eigenmodes for the statically loaded tyre obtained from a finite element (FE) model of the tyre. A closed-form expression for the Green's functions of a rotating tyre in the Eulerian reference system as a function of the eigenfrequencies and eigenmodes of the statically loaded tyre is found. Non-linear effects during loading are accounted for in the FE model, while the frequency shift due to the rotational velocity is included in the calculation of the Green's functions. In the literature on tyre/road noise these functions are generally used to determine the tyre response during tyre/road contact calculations. The presented formulation opens the possibility to solve the contact problem directly in the Eulerian reference frame and to include local tyre softening due to non-linear effects while keeping the computational advantage of describing the tyre dynamics as a set of impulse response functions. The advantage of obtaining the Green's functions in the Eulerian reference system is that only the Green's functions corresponding to the potential contact zone need to be determined, which significantly reduces the computational cost of solving the tyre/road contact and since the mesh is fixed in space, a finer mesh can be used for the potential contact zone, improving the accuracy of the contact force calculations. Although these effects might be less pronounced if a more accurate tyre model is used, it is found that using the Green's functions of the loaded tyre in a contact force calculation leads to smaller forces than in the unloaded case, lower frequencies are present in the response and they decrease faster as the rotational velocity increases.

Place, publisher, year, edition, pages
Elsevier, 2011. Vol. 48, no 25-26, 3462-3470 p.
Keyword [en]
Green's function, Tyre, Rotation, Vibrations, Eigenvalues
National Category
Applied Mechanics
URN: urn:nbn:se:kth:diva-52540DOI: 10.1016/j.ijsolstr.2011.09.006ISI: 000297234800005ScopusID: 2-s2.0-80054698027OAI: diva2:468831
TrenOp, Transport Research Environment with Novel Perspectives

QC 20111221

Available from: 2011-12-21 Created: 2011-12-19 Last updated: 2016-04-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lopez Arteaga, Ines
By organisation
MWL Structural and vibroacoustics
In the same journal
International Journal of Solids and Structures
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 35 hits
ReferencesLink to record
Permanent link

Direct link