Change search
ReferencesLink to record
Permanent link

Direct link
Computing all pairs (lambda,mu) such that lambdais a double eigenvalue of A plus mu B
KTH, School of Computer Science and Communication (CSC).ORCID iD: 0000-0001-9443-8772
2011 (English)In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 32, no 3, 902-927 p.Article in journal (Refereed) Published
Abstract [en]

Double eigenvalues are not generic for matrices without any particular structure. A matrix depending linearly on a scalar parameter, A + mu B, will, however, generically have double eigenvalues for some values of the parameter mu. In this paper, we consider the problem of finding those values. More precisely, we construct a method to accurately find all scalar pairs (lambda, mu) such that A + mu B has a double eigenvalue lambda, where A and B are given arbitrary complex matrices. The general idea of the globally convergent method is that if mu is close to a solution, then A + mu B has two eigenvalues which are close to each other. We fix the relative distance between these two eigenvalues and construct a method to solve and study it by observing that the resulting problem can be stated as a two-parameter eigenvalue problem, which is already studied in the literature. The method, which we call the method of fixed relative distance (MFRD), involves solving a two-parameter eigenvalue problem which returns approximations of all solutions. It is unfortunately not possible to get full accuracy with MFRD. In order to compute solutions with full accuracy, we present an iterative method which returns a very accurate solution, for a sufficiently good starting value. The approach is illustrated with one academic example and one application to a simple problem in computational quantum mechanics.

Place, publisher, year, edition, pages
2011. Vol. 32, no 3, 902-927 p.
Keyword [en]
National Category
Computer and Information Science
URN: urn:nbn:se:kth:diva-53361DOI: 10.1137/100783157ISI: 000295399200012ScopusID: 2-s2.0-80054044730OAI: diva2:469989
QC 20120207Available from: 2011-12-27 Created: 2011-12-27 Last updated: 2012-02-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jarlebring, Elias
By organisation
School of Computer Science and Communication (CSC)
In the same journal
SIAM Journal on Matrix Analysis and Applications
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link