References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On approximation of stable linear dynamical systems using Laguerre and Kautz functionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 1996 (English)In: Automatica, ISSN 0005-1098, Vol. 32, no 5, 693-708 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

1996. Vol. 32, no 5, 693-708 p.
##### Keyword [en]

Laguerre functions, Linear systems, Model approximation, Model reduction, Orthonormal basis functions, Control system analysis, Describing functions, Mathematical models, System stability, Kautz functions, Stable linear dynamical systems, Linear control systems
##### National Category

Control Engineering
##### Identifiers

URN: urn:nbn:se:kth:diva-55418DOI: 10.1016/0005-1098(95)00198-0ISI: A1996UQ52800003OAI: oai:DiVA.org:kth-55418DiVA: diva2:471612
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

QC 20120104 NR 20140805Available from: 2012-01-02 Created: 2012-01-02 Last updated: 2013-09-05Bibliographically approved

Approximation of stable linear dynamical systems by means of so-called Laguerre and Kautz functions, which are the Laplace transforms of a class of orthonormal exponentials, is studied. Since the impulse response of a stable finite dimensional linear dynamical system can be represented by a sum of exponentials (times polynomials), it seems reasonable to use basis functions of the same type. Assuming that the transfer function of a system is bounded and analytic outside a given disc, it is shown that Laguerre basis functions are optimal in a mini-max sense. This result is extended to the "two-parameter" Kautz functions which can have complex poles, while the poles of Laguerre functions are restricted to the real axis. By conformal mapping techniques the "two-parameter" Kautz approximation problem is recast as two Laguerre approximation problems. Thus, the well-developed theory of Laguerre functions can be applied to analyze Kautz approximations. Unilateral shifts are used to further develop the connection between Laguerre functions and Kautz functions. Results on H2 and Hâˆž approximation using Kautz models are given. Furthermore, the weighted L2 Kautz approximation problem is shown to be equivalent to solving a block Toeplitz matrix equation.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});