Change search
ReferencesLink to record
Permanent link

Direct link
ASTEC extension to other reactor types than Generation II PWR
IRSN, Cadarache (FR).
GRS, Köln (GE).
IKE, Stüttgart (GE).
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
Show others and affiliations
2008 (English)In: Proc. of ERMSAR 2008, 2008Conference paper (Refereed)
Abstract [en]

The initial IRSN-GRS requirements for the development of the ASTEC European integral codecovered all present and future PWR, VVER and BWR. After 4 years and a half of SARNET activities, theASTEC V1 code is fully applicable to all severe accident scenarios, at power operation, in Gen.II PWR andVVER. Partners performed substantial code assessment tasks on both VVER-440 and 1000 with good resultson validation (such as PACTEL) and benchmarking with other codes on plant sequences.In the frame of preparation of the new series of ASTEC V2 versions that will account for the needs ofevolution expressed by the SARNET partners, the extension to Gen.III PWR is under way. The 1stversionV2.0, planned for march 09, will be applicable to the EPR, in particular its external core-catcher and to newPWR designs with In-Vessel Melt Retention (IVMR), the latter thanks to CEA work. IVS calculations onVVER-440/V213 showed the ASTEC V1 capabilities to evaluate the IVMR possibilities: these capabilitieswill be improved in the future through a coupled analysis of in-vessel corium and cavity cooling circuit.For BWR applications, the KTH ranking of needs of model adaptations was reviewed by GRS. Theseadaptations mainly concern the Reactor Cooling System (RCS) thermal-hydraulics (internal pumps, drier,separator...) and the core degradation (canisters, control rod guide tubes, penetrations in lower head...). Forcore degradation, the scoping application test on the CORA-18 experiment using the current ASTEC V1models (for adaptation to absorber blades and canisters) showed promising results. The GRS benchmark withthe COCOSYS GRS code showed the applicability of the CPA containment module. For ex-vesselphenomena, the only missing model is the formation of a debris bed during corium slump from lower headinto a flooded cavity after lower head failure and its coolability/erosion behaviour with core concreteinteraction under flooded conditions. All other current V1 models can be used, sometimes with minoradaptations or further need of validation, as for iodine behaviour in containment at temperatures up to 1000Kand the possible decomposition of metal iodides to gaseous iodine at these high temperatures in atmosphere.Detailed specifications will be written soon to prepare the development and validation task planned inSARNET2 with the same partners.For CANDU reactors applications, the priority concerns the core degradation due to the peculiarity ofthe vessel geometry (horizontal core, pressure tubes, calandria...). The exploratory plant applications haveshown that all other current models can be used but tests are still necessary to conclude on models of PHT(Primary Heat Transfer) thermal-hydraulics. INR work takes benefit of the AECL knowledge of MAAP4-CANDU models. A significant benefit is foreseen from the BARC (India) work on core degradation modelsin the frame of IRSN-BARC bilateral collaboration.

Place, publisher, year, edition, pages
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-57697OAI: diva2:472483
ERMSAR 2008, Nesseber, Bulgaria, September 23-25, 2008
QC 20120104. Session “ASTEC Code and PSA2 method development activities”, Paper 4.7Available from: 2012-01-03 Created: 2012-01-03 Last updated: 2012-01-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Search in DiVA

By author/editor
Ma, Weimin
By organisation
Nuclear Power Safety
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 49 hits
ReferencesLink to record
Permanent link

Direct link