Change search
ReferencesLink to record
Permanent link

Direct link
Isothermal dynamic thermal diffusivity studies of the reduction of NiO and NiWO(4) precursors by hydrogen
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
2011 (English)In: International Journal of Materials Research - Zeitschrift für Metallkunde, ISSN 1862-5282, Vol. 102, no 11, 1336-1344 p.Article in journal (Refereed) Published
Abstract [en]

Thermal diffusivity measurements of uniaxially cold pressed NiO and NiWO(4) were carried out in a dynamic mode in order to monitor the kinetics of hydrogen reduction of the above-mentioned materials using a laser flash unit. The calculated activation energy was found to be higher than that for chemically-controlled reaction obtained earlier by thermogravimetry. The difference has been attributed to physical changes occurring along with the chemical reaction. The activation energy of sintering of the products was evaluated to be 33 and 36 kJ.mol(-1) for NiO and NiWO(4), respectively. Thermal conductivities were calculated taking into consideration the change in heat capacity considering the compositional and the structural changes with the progress of the reaction. The potentiality of the laser-flash method as a complementary technique to thermogravimetry in understanding the mechanism of gas solid reactions is discussed.

Place, publisher, year, edition, pages
2011. Vol. 102, no 11, 1336-1344 p.
Keyword [en]
Thermal diffusivity, Gas-solid reactions, Reduction by hydrogen, Ni-W-O system, Laser flash
National Category
Materials Engineering
URN: urn:nbn:se:kth:diva-58823DOI: 10.3139/146.110591ISI: 000297955000004OAI: diva2:474167
QC 20120109Available from: 2012-01-09 Created: 2012-01-09 Last updated: 2012-03-23Bibliographically approved
In thesis
1. Investigations of the Kinetics of Reduction and Reduction/Carburization of NiO-WO3 Precursors.
Open this publication in new window or tab >>Investigations of the Kinetics of Reduction and Reduction/Carburization of NiO-WO3 Precursors.
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Kinetic studies of reduction of the mixtures of NiO and WO3 having different Ni/(Ni+W) molar ratios in flowing hydrogen gas were investigated by means of Thermo Gravimetric Analysis (TGA), Fluidized Bed (FB) technique as well as Thermal diffusivity measurements under isothermal conditions. In the case of TGA, the reaction progress was monitored by mass loss, while evolved gas analysis by a gas chromatograph was the indicator of the reaction progress in the case of FB. The results indicate that the reduction reaction proceeds through three consecutive steps, viz.

NiO-WO3 Ni-WO3 Ni-WO2 Ni-W

The present results show that the fluidized bed technique can be successfully utilized in bulk production of intermetallics containing W and a transition metal (or a composite material) wherein the process conditions would have a strong impact on the particle size of the end product.

During the investigations, it was found that there was a delay in the reaction during the hydrogen reduction of NiO-WO3 mixed oxides in a fluidized bed reactor. In order to understand the same, a theoretical model was developed to estimate the apparent reaction rate constant for the reduction reaction from the intrinsic chemical reaction rate constant. Appropriate differential mass balance equations based on intrinsic chemical reaction rate constants and thermodynamic equilibria were developed. The proposed model was successfully applied in predicting the overall reaction kinetics of a fluidized bed reactor. This model is also suitable for scale-up calculations.

SEM images showed that the particle size of the final product was dependent on the Ni/(Ni+W) molar ratio; smaller particles were formed at higher nickel contents. X-ray diffractions of the reduced precursors exhibited slight shift of Ni peaks from the standard one indicating the dissolution of W into Ni.

A new method for studying kinetics of the hydrogen reduction of NiO-WO3 precursors was developed in which the reaction progress was monitored by following the change of thermal diffusivity of the precursors. Activation energies of reduction as well as sintering were calculated. This method is considered unique as it provides information regarding the physical changes like sintering, change of porosity and agglomeration along with the chemical changes occurring during the gas/solid reaction.

As a continuation of the kinetic studies, Ni-W-C ternary carbides were synthesized by simultaneous reduction–carburization of Ni-W-O system using H2-CH4 gas mixtures by TGA. The results showed that the reduction of the oxide mixture was complete before the carburization took place. The nascent particles of the metals formed by reduction could react with the gas mixture with well-defined carbon potential to form a uniform product of Ni-W-C. The above-mentioned experiments were conducted in such a way to ensure that the reaction was controlled by the chemical reaction. The activation energies of the reduction as well as carburization processes at different stages were calculated accordingly.

The present dissertation demonstrates the potential of the investigations of gas/solid reactions towards tailoring the process towards materials with optimized properties as for example introduction of interstitials. The present process design is extremely environment-friendly with reduced number of unit processes and the product being H2O.

Place, publisher, year, edition, pages
Stockholm: KTH, 2010. viii, 54 p.
Reduction, Reduction-Carburization, Gas-solid Reactions, Kinetics, Hydrogen, Methane, Thermogravimetric analysis, Fluidized bed, Simulation, Thermal diffusivity, Thermal conductivity, Laser flash
National Category
Metallurgy and Metallic Materials
urn:nbn:se:kth:diva-26015 (URN)KTH/MSE--10/51--SE+THMETU/AVH (ISRN)978-91-7415-774-1 (ISBN)
Public defence
2010-11-25, Salongen Lavoisier, Biblioteket, Osquars Backe 31, KTH, Stockholm, 09:00 (English)
QC 20101112Available from: 2010-11-12 Created: 2010-11-09 Last updated: 2012-03-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahmed, Hesham M.Seetharaman, Seshadri
By organisation
Materials Science and Engineering
In the same journal
International Journal of Materials Research - Zeitschrift für Metallkunde
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 59 hits
ReferencesLink to record
Permanent link

Direct link