kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.ORCID iD: 0000-0003-0300-0762
2012 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 90, no 1, p. 32-37Article in journal (Refereed) Published
Abstract [en]

One of the by-products from bioethanol production using woody materials is lignin solids, which can be utilized as feedstock for combined heat and power (CHP) production. In this paper, the influence of integrating a drying process into a biomass-based polygeneration system is studied, where the exhaust flue gas is used to dry the lignin solids instead of direct condensation in the flue gas condenser (FGC). The evaporated water vapor from the lignin solids is mixed with the drying medium for consequent condensation. Thus, the exhaust flue gas after the drying still has enough humidity to produce roughly the same amount of condensation heat as direct condensation in the existing configuration. The influence of a drying process and how it interacts with the FGC in CHP production as a part of the polygeneration system is analyzed and evaluated. If a drying process is integrated with the polygeneration system, overall energy efficiency is only increased by 3.1% for CHP plant, though the power output can be increased by 5.5% compared with the simulated system using only FGC.

Place, publisher, year, edition, pages
2012. Vol. 90, no 1, p. 32-37
Keywords [en]
Bioethanol, Lignin, Drying, Exhaust flue gas condenser, Moisture content, Polygeneration
National Category
Energy Systems Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-58809DOI: 10.1016/j.apenergy.2011.02.019ISI: 000297426100006Scopus ID: 2-s2.0-80055041225OAI: oai:DiVA.org:kth-58809DiVA, id: diva2:474580
Note
QC 20120109Available from: 2012-01-09 Created: 2012-01-09 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Yan, Jinyue

Search in DiVA

By author/editor
Yan, Jinyue
By organisation
Energy Processes
In the same journal
Applied Energy
Energy SystemsChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf