Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cycloidal magnetic order in the compound IrMnSi
Department of Physics, Uppsala University.ORCID iD: 0000-0003-4341-5663
Show others and affiliations
2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 71, no 17Article in journal (Refereed) Published
Abstract [en]

A new compound, IrMnSi, has been synthesized, and its crystal structure and magnetic properties have been investigated by means of neutron powder diffraction, magnetization measurements, and first-principles theory. The crystal structure is found to be of the TiNiSi type (ordered Co2P, space groupPnma). The Mn-projected electronic states are situated at the Fermi level, giving rise to metallic binding, whereas a certain degree of covalent character is observed for the chemical bond between the Ir and Si atoms. A cycloidal, i.e., noncollinear, magnetic structure was observed below 460 K, with the propagation vector q=[0,0,0.4530(5)] at 10 K. The magnetism is dominated by large moments on the Mn sites, 3.8μB∕atom from neutron diffraction. First-principles theory reproduces the propagation vector of the experimental magnetic structure as well as the angles between the Mn moments. The calculations further result in a magnetic moment of 3.2μB for the Mn atoms, whereas the Ir and Si moments are negligible, in agreement with observations. A calculation that more directly incorporates electron-electron interactions improves the agreement between the theoretical and experimental magnetic moments. A band mechanism is suggested to explain the observed magnetic order.

Place, publisher, year, edition, pages
2005. Vol. 71, no 17
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-62595DOI: 10.1103/PhysRevB.71.174420ISI: 000229935000068OAI: oai:DiVA.org:kth-62595DiVA: diva2:480649
Note
QC 20120125Available from: 2012-01-19 Created: 2012-01-19 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bergqvist, Lars

Search in DiVA

By author/editor
Bergqvist, Lars
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf