Change search
ReferencesLink to record
Permanent link

Direct link
Optimal Puncturing Ratios and Energy Allocation for Multiple Parallel Concatenated Codes
Chalmers University of Technology.
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-7182-9543
University of South Australia. (Institute for Telecommunication Research)
2009 (English)In: IEEE Transactions on Information Theory, ISSN 0018-9448, Vol. 55, no 5, 2062-2077 p.Article in journal (Refereed) Published
Abstract [en]

We propose a systematic design framework for optimal, low-complexity punctured multiple parallel concatenated codes (MPCCs), based on minimizing the convergence threshold using extrinsic information transfer (EXIT) charts. As the convergence threshold is related to the area between the two EXIT curves, the corresponding optimization problem is equivalent to a curve-fitting problem. The EXIT curves are determined by the respective EXIT functions of the constituents, which can be conveniently shaped through the use of random puncturing and unequal energy allocations across parallel coding streams. The design task is therefore to find the optimal combination of constituents, puncturing ratios, and energy allocation for matching the EXIT curves. A search over all rate-one convolutional codes of memory length four or less is performed, identifying 98 classes of codes with unique EXIT functions out of a total of 310 codes. Low-complexity MPCCs with up to four constituents are found, where the convergence thresholds are observed to be within 0.1 dB or less of the fundamental minimum signal-to-noise ratio (SNR) corresponding to the binary phase-shift keying (BPSK) capacity for code rates 1/3 ≤ R < 7/8. Further allowing for unequal energy allocation, the convergence thresholds for lower code rates are similarly improved.

Place, publisher, year, edition, pages
2009. Vol. 55, no 5, 2062-2077 p.
Keyword [en]
Code search, Energy allocation, Extrinsic information transfer (EXIT) chart, Iterative decoding, Parallel concatenated codes, Puncturing
National Category
URN: urn:nbn:se:kth:diva-62611DOI: 10.1109/TIT.2009.2015997ISI: 000265713000010ScopusID: 2-s2.0-65749109899OAI: diva2:480800
QC 20120124Available from: 2012-01-19 Created: 2012-01-19 Last updated: 2012-01-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rasmussen, Lars Kildehöj
By organisation
Communication TheoryACCESS Linnaeus Centre
In the same journal
IEEE Transactions on Information Theory

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link