Change search
ReferencesLink to record
Permanent link

Direct link
Control of permanent-magnet synchronous machines in automotive applications
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis deals with the design and analysis of control system structures for electric drives equipped with permanent-magnet synchronous machines (PMSMs) in automotive applications. Sensorless control, meaning vector control without a mechanical rotor position sensor, is considered and a speed and position estimator of phase-locked loop type is analyzed thoroughly. Modifications are proposed to allow for operation in the whole speed range and to improve the estimator's capacity to handle large speed estimation errors. It is shown that rotor saliency affects the estimator dynamics which may become unstable for certain parameter selections and operating conditions. Simple parameter selection rules are therefore derived in order to guarantee stability and to simplify an implementation. Of particular interest for PMSMs with small or negligible rotor saliency, an estimator, extracting position information solely from the back-electromotive force is also considered. The estimator is based on the well known "voltage model" and modifications are proposed in order to improve the estimator's performance in the low-speed range by guaranteeing synchronization at startup and allowing stable rotation reversals. The theory of loss minimization by means of control is applied to a PMSM drive intended for propulsion in a hybrid electric vehicle. Through stronger field weakening, the fundamental core losses can be reduced at the expense of increased resistive losses. The study shows, however, that the additional inverter losses, due to the addition of extra field weakening, reduce the potential to minimize the total losses considerably. A review of fault-tolerant PMSM drives is presented and control algorithms are proposed for achieving sensorless control, closed-loop field-weakening control, and maximum utilization of the available inverter voltage for a drive that, for redundancy, adopts an additional inverter leg connected to the neutral point of the machine. The impact of various electrical faults in a vehicle equipped with in-wheel motors and individual steering actuators is also investigated. Here, it is shown that vehicle stability can be maintained with only minor displacements using a closed-loop path controller and an optimal approach, recently reported in the literature, to allocate tire forces.

Place, publisher, year, edition, pages
Chalmers University of Technology , 2006.
, Doktorsavhandlingar vid Chalmers tekniska högskola, ISSN 0346-718X ; 2528
Keyword [en]
Electric drive, electric vehicle, fault tolerance, hybrid electric vehicle, inverter, in-wheel motor, loss minimization, permanent-magnet synchronous machine, phase-locked loop, position estimation, sensorless control, vector control
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-63819ISBN: 91-7291-846-2OAI: diva2:482729
QC 20120125Available from: 2012-01-25 Created: 2012-01-24 Last updated: 2012-01-25Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Wallmark, Oskar
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 263 hits
ReferencesLink to record
Permanent link

Direct link