Change search
ReferencesLink to record
Permanent link

Direct link
Diffusion and viscosity in arabinoxylan solutions: Implications for nutrition
The University of Queensland.
The University of Queensland.ORCID iD: 0000-0003-3572-7798
The University of Queensland.
The University of Queensland.
Show others and affiliations
2010 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 82, no 1, 46-53 p.Article in journal (Refereed) Published
Abstract [en]

Non-starch polysaccharides such as arabinoxylans have important roles in the human diet, resulting in potential benefits such as increased microbial fermentation, promotion of beneficial microflora, prevention of re-absorption of bile acids leading to lower plasma cholesterol, and retardation of starch digestion. The latter two beneficial effects may arise from viscosity and/or diffusion phenomena in the gastrointestinal tract. To study this, measurements of the viscosity and diffusion coefficients of a polymer probe similar in size to both bile salt micelles and alpha-amylase were carried out for water solutions of three arabinoxylans with differing viscosities. Diffusion coefficients were obtained using fluorescence recovery after photobleaching (FRAP). The concentration dependence of both viscosity and diffusion coefficients followed the usual behaviour of polymers for each of three arabinoxylan samples. However, at a given concentration, the sample with the highest viscosity also had the highest probe diffusion coefficient: the reverse of what would be expected for homogeneous solutions. This apparent anomaly is ascribed to differences in polymer structure between the three samples giving rise to varying levels of local polymer aggregation and consequent microvoids. These differences are verified using characterisation with multiple-detection size-exclusion chromatography. Deviations from simple Stokes-Einstein behaviour are ascribed to the existence of aggregates in solution. The results show that studies of the role of arabinoxylans in human nutrition cannot assume that the diffusion coefficients of species with sizes in the range important for digestive processes in a series of samples will increase with decreasing viscosity at a given concentration: diffusion coefficient and viscosity must be measured independently.

Place, publisher, year, edition, pages
2010. Vol. 82, no 1, 46-53 p.
Keyword [en]
Arabinoxylan, Non-starch polysaccharide, Viscosity, Diffusion, Digestion, Size-exclusion chromatography
National Category
Food Science
URN: urn:nbn:se:kth:diva-48781DOI: 10.1016/j.carbpol.2010.04.019ISI: 000280574400008OAI: diva2:484231
QC 20120127Available from: 2012-01-26 Created: 2011-11-23 Last updated: 2012-01-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Vilaplana, Francisco
In the same journal
Carbohydrate Polymers
Food Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 50 hits
ReferencesLink to record
Permanent link

Direct link