Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Half-duplex relaying based on quantize-and-forward
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
KTH, School of Electrical Engineering (EES), Communication Theory. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0002-7926-5081
Princeton.
Princeton.
2011 (English)In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), 2011, 2447-2451 p.Conference paper, Published paper (Refereed)
Abstract [en]

The original compress-and-forward relaying scheme uses the technique of random binning at the relay node and successive decoding at the destination node. Recently, a scheme (termed the quantize-and-forward scheme in this paper) without binning and using joint decoding at the destination node has been proposed, which has been shown to achieve the same rate as the original compress-and-forward scheme. Since the previous work focuses on the so-called full duplex relay network, in this paper, an adaption of it for relay networks with a half-duplex relay is provided. Coding schemes and achievable rate results are presented for discrete memoryless half-duplex relay channels and half-duplex additive white Gaussian noise (AWGN) relay channels. Moreover, slow fading channels are considered, for which outage-related performance measures are evaluated. Specifically, the outage probability and the expected rate of the quantize-and-forward scheme are derived and compared with other well-known schemes. Furthermore, the diversity-multiplexing tradeoff is derived. It is shown that the quantize-and-forward scheme is a more suitable scheme than the compress-and-forward scheme over slow fading channels and it achieves the optimal diversity-multiplexing trade-off of a half-duplex relay channel.

Place, publisher, year, edition, pages
2011. 2447-2451 p.
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-67604DOI: 10.1109/ISIT.2011.6034004ISI: 000297465102146Scopus ID: 2-s2.0-80054803284OAI: oai:DiVA.org:kth-67604DiVA: diva2:485072
Conference
2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011. St. Petersburg. 31 July 2011 - 5 August 2011
Note
QC 20120131Available from: 2012-01-27 Created: 2012-01-27 Last updated: 2012-04-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Skoglund, Mikael

Search in DiVA

By author/editor
Yao, ShaSkoglund, Mikael
By organisation
Communication TheoryACCESS Linnaeus Centre
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf