Change search
ReferencesLink to record
Permanent link

Direct link
Using Timber in a multi-body design environment to develop reliable embedded software
Luleå University of Technology.
Luleå University of Technology.ORCID iD: 0000-0002-2265-9004
Luleå University of Technology.
Luleå University of Technology.
2008 (English)Conference proceedings (editor) (Refereed)
Abstract [en]

A major challenge for the automotive industry is to reduce the development time while meeting quality assessments for their products. This calls for new design methodologies and tools that scale with the increasing amount and complexity of embedded systems in today's vehicles.

In this paper we undertake an approach to embedded software design based on executable models expressed in the high-level modelling paradigm of Timber. In this paper we extend previous work on Timber with a multi-paradigm design environment, aiming to bridge the gap between engineering disciplines by multi-body co-simulation of vehicle dynamics, embedded electronics, and embedded executable models. Its feasibility is demonstrated on a case study of a typical automotive application (traction control), and its potential advantages are discussed, as highlighted below:

shorter time to market through concurrent, co-operative distributed engineering, andreduced cost through adequate system design and dimensioning, andimproved efficiency of the design process through migration and reuse of executable software components, andreduced need for hardware testing, by specification verification on the executable model early in the design process, andimproved quality, by opening up for formal methods for verification.

Place, publisher, year, edition, pages
SAE Digital Library , 2008.
National Category
Vehicle Engineering
URN: urn:nbn:se:kth:diva-69528DOI: 10.4271/2008-01-0742OAI: diva2:485569
QC 20120130Available from: 2012-01-29 Created: 2012-01-29 Last updated: 2012-01-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nybacka, Mikael
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link