Change search
ReferencesLink to record
Permanent link

Direct link
Quasi-single helicity state at shallow reversal in TPE-RX reversed-field pinch experiment
Advanved insittute of Industrial Science and Technology (JAPAN). (Fusion Plasma Physics)ORCID iD: 0000-0002-9546-4494
Show others and affiliations
2005 (English)In: Physics of Plasmas, ISSN 1070-664X, Vol. 12, 112501- p.Article in journal (Refereed) Published
Abstract [en]

The operating conditions for obtaining a quasi-single helicity (QSH) state with a good reproducibility are found in a reversed-field pinch (RFP) experiment on the large RFP machine, TPE-RX [ Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999) ]. In these conditions, the reversal of toroidal magnetic field (Bta) is maintained at a very shallow value ( ∼ −0.2 mT) after the setting up phase and the following fast current rising phase. After a certain period at this shallow reversal ( ∼ 15–25 ms), the m/n = 1/6 mode (m and n being the poloidal and toroidal Fourier mode numbers, respectively) rapidly grows and saturates before the termination of discharge. The growth of this mode dominates the other modes and the QSH state with m/n = 1/6 is finally achieved. This QSH state can be sustained for a long period (up to ∼ 45 ms) almost until the end of discharge by applying a delayed reversal of Bta with appropriate trigger timing and magnitude. The initial setup of the QSH states shows a reproducibility of almost 100%, but its sustainment for a long period shows a slightly reduced reproducibility ( ∼ 85%). The initial rapid growth of the single dominant mode is compared with the numerical results of linear stability and nonlinear three-dimensional (3D) calculations by assuming the experimental magnetic field profile estimated with a standard model. Linear calculations show that the m/n = 1/6 mode has the maximum growth rate to the ideal magnetohydrodynamic instability and can explain the dominant growth of this mode. The 3D calculations also show a qualitative agreement with the experiment, where under some conditions the m/n = 1/6 mode becomes dominant after an initial relaxation and continues to the end of the simulation. These results indicate that the present QSH state is the combined result of the linear growth and nonlinear saturation of a particular mode.

Place, publisher, year, edition, pages
2005. Vol. 12, 112501- p.
National Category
Fusion, Plasma and Space Physics
URN: urn:nbn:se:kth:diva-71781DOI: 10.1063/1.2118728ISI: 000233569600025OAI: diva2:486997
QC 20120202Available from: 2012-01-31 Created: 2012-01-31 Last updated: 2012-02-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Frassinetti, Lorenzo
In the same journal
Physics of Plasmas
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link