Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response
Department of Plant Sciences, Tel Aviv University.
BTI, Cornell University, USA.
Department of Plant Sciences, Tel Aviv University.
BTI, Cornell University, USA.
Show others and affiliations
2006 (English)In: Molecular plant pathology, ISSN 1464-6722, E-ISSN 1364-3703, Vol. 7, no 6, 593-604 p.Article in journal (Refereed) Published
Abstract [en]

Members of the GRAS family of transcriptional regulators have been implicated in the control of plant growth and development, and in the interaction of plants with symbiotic bacteria. Here we examine the complexity of the GRAS gene family in tomato (Solanum lycopersicum) and investigate its role in disease resistance and mechanical stress. A large number of tomato ESTs corresponding to GRAS transcripts were retrieved from the public database and assembled in 17 contigs of putative genes. Expression analysis of these genes by real-time RT-PCR revealed that six SlGRAS transcripts accumulate during the onset of disease resistance to Pseudomonas syringae pv. tomato. Further analysis of two selected family members showed that their transcripts preferentially accumulate in tomato plants in response to different avirulent bacteria or to the fungal elicitor EIX, and their expression kinetics correlate with the appearance of the hypersensitive response. In addition, transcript levels of eight SlGRAS genes, including all the Pseudomonas-inducible family members, increased in response to mechanical stress much earlier than upon pathogen attack. Accumulation of SlGRAS transcripts following mechanical stress was in part dependent on the signalling molecule jasmonic acid. Remarkably, suppression of SlGRAS6 gene expression by virus-induced gene silencing impaired tomato resistance to P. syringae pv. tomato. These results support a function for GRAS transcriptional regulators in the plant response to biotic and abiotic stress.

Place, publisher, year, edition, pages
2006. Vol. 7, no 6, 593-604 p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-71884DOI: 10.1111/J.1364-3703.2006.00364.XISI: 000241389600013OAI: oai:DiVA.org:kth-71884DiVA: diva2:487062
Note
QC 20120229Available from: 2012-01-31 Created: 2012-01-31 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ekengren, Sophia
In the same journal
Molecular plant pathology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf