Change search
ReferencesLink to record
Permanent link

Direct link
Influence of electrical and thermal properties on RF ablation of breast cancer: is the tumour preferentially heated?
Show others and affiliations
2005 (English)In: Biomedical engineering online, ISSN 1475-925X, Vol. 4, 41-41 p.Article in journal (Refereed) Published
Abstract [en]

Background: Techniques based on radio frequency (RF) energy have many applications in medicine, in particular tumour ablation. Today, mammography screening detects many breast cancers at an early stage, facilitating treatment by minimally invasive techniques such as radio frequency ablation (RFA). The breast cancer is mostly surrounded by fat, which during RFA-treatment could result in preferential heating of the tumour due to the substantial differences in electrical parameters. The object of this study was to investigate if this preferential heating existed during experimental in vitro protocols and during computer simulations. Methods: Excised breast material from four patients with morphologically diagnosed breast cancers were treated with our newly developed RFA equipment. Subsequently, two finite element method (FEM) models were developed; one with only fat and one with fat and an incorporated breast cancer of varying size. The FEM models were solved using temperature dependent electrical conductivity versus constant conductivity, and transient versus steady-state analyses. Results: Our experimental study performed on excised breast tissue showed a preferential heating of the tumour, even if associated with long tumour strands. The fat between these tumour strands was surprisingly unaffected. Furthermore, the computer simulations demonstrated that the difference in electrical and thermal parameters between fat and tumour tissue can cause preferential heating of the tumour. The specific absorption rate (SAR) distribution changed significantly when a tumour was present in fatty tissue. The degree of preferential heating depended on tissue properties, tumour shape, and placement relative to the electrode. Temperature dependent electrical conductivity increased the thermal lesion volume, but did not change the preferential heating. Transient solutions decreased the thermal lesion volume but increased the preferential heating of the tumour. Conclusions: Both the computer model and the in vitro study confirmed that preferential heating of the tumour during RFA exists in breast tissue. However, the observed preferential heating in the in vitro studies were more pronounced, indicating that additional effects other than the difference in tissue parameters might be involved. The existing septa layers between the cancer tissue and the fatty tissue could have an additional electrical or thermal insulating effect, explaining the discrepancy between the in vitro study and the computer model.

Place, publisher, year, edition, pages
2005. Vol. 4, 41-41 p.
National Category
Applied Mechanics
URN: urn:nbn:se:kth:diva-72800DOI: 10.1186/1475-925X-4-41ScopusID: 2-s2.0-27744561703OAI: diva2:488124
QC 20120305Available from: 2012-02-01 Created: 2012-02-01 Last updated: 2012-03-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Eriksson, Anders
By organisation
Structural Mechanics
In the same journal
Biomedical engineering online
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link