Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cole parameter estimation from electrical bioconductance spectroscopy measurements
KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).ORCID iD: 0000-0002-6995-967X
KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
Department of Theory of the Signal and Communications, University of Alcala, Madrid, Spain. (Applied Signal Processing)
2010 (English)In: 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), IEEE Press, 2010, Vol. 2010, 3495-3498 p.Conference paper, Published paper (Refereed)
Abstract [en]

Several applications of Electrical Bioimpedance (EBI) make use of Cole parameters as base of their analysis, therefore Cole parameters estimation has become a very common practice within Multifrequency- and EBI spectroscopy. EBI measurements are very often contaminated with the influence of parasitic capacitances, which contributes to cause a hook-alike measurement artifact at high frequencies in the EBI obtained data. Such measurement artifacts might cause wrong estimations of the Cole parameters, contaminating the whole analysis process and leading to wrong conclusions. In this work, a new approach to estimate the Cole parameters from the real part of the admittance, i.e. the conductance, is presented and its performance is compared with the results produced with the traditional fitting of complex impedance to a depressed semi-circle. The obtained results prove that is feasible to obtain the full Cole equation from only the conductance data and also that the estimation process is safe from the influence capacitive leakage.

Place, publisher, year, edition, pages
IEEE Press, 2010. Vol. 2010, 3495-3498 p.
Series
IEEE Engineering in Medicine and Biology Society Conference Proceedings, ISSN 1557-170X
Keyword [en]
BODY, BIOIMPEDANCE, IMPEDANCE
National Category
Medical Laboratory and Measurements Technologies
Identifiers
URN: urn:nbn:se:kth:diva-73051DOI: 10.1109/IEMBS.2010.5627790ISI: 000287964003223PubMedID: 21097029ISBN: 978-1-4244-4124-2 (print)OAI: oai:DiVA.org:kth-73051DiVA: diva2:488570
Conference
32nd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBC 10), Buenos Aires, ARGENTINA, AUG 30-SEP 04, 2010
Note
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. QC 20120209Available from: 2012-02-09 Created: 2012-02-01 Last updated: 2013-09-17Bibliographically approved
In thesis
1. Model Based Enhancement of Bioimpedance Spectroscopy Analysis: Towards Textile Enabled Applications
Open this publication in new window or tab >>Model Based Enhancement of Bioimpedance Spectroscopy Analysis: Towards Textile Enabled Applications
2011 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Several signal processing approaches have been developed to overcome the effect of stray capacitances in Electrical Bioimpedance Spectroscopy (EBIS) measurements. EBIS measurements obtained with textile-enabled instrumentation are more vulnerable to stray capacitances. Currently, the most widespread approach for correcting the effect of stray capacitances in EBIS is the time delay (

Td) compensation method, which also has several drawbacks. In this study, the Td method is revisited and its limitations and its lack of a scientific basis are demonstrated. To determine better ways to overcome the effect of stray capacitances, a simplified measurement model is proposed that is based on previous models of artefacts in EBIS measurements described in the literature. The model consists of a current divider with a parasitic capacitance (Cpar) in parallel with the load. Cpar creates a pathway for the measurement current to leak away from the load, provoking a capacitive leakage effect. In this thesis, three approaches with different limitations are proposed to overcome the capacitive leakage effect. The first approach estimates Cpar and subtracts it from the measurements, thus finding the load. Cpar can be estimated because the susceptance of biological tissue is null at infinite frequency. Therefore, at high frequencies, the susceptance of the tissue can be neglected, and the slope of the susceptance of the measurement is Cpar. The accuracy of Cpar depends on the maximum frequency measured and the value of Cpar. Therefore, it may not be possible to accurately estimate small values of Cpar in the typical frequency ranges used in EBIS. The second and third approaches use the Cole fitting process to estimate the Cole parameters, which form the basis for most EBIS applications. Because the conductance of the measurement is free from the effect of Cpar, performing Cole fitting on the conductance avoids the effect of Cpar in the fitting process. With a poor skin-electrode contact, this approach may not be sufficiently accurate. The third approach would be to perform the Cole fitting on the modulus with a reduced upper frequency limit because the modulus and the low-medium frequencies are very robust against the effect of artefacts. In this approach, a slight capacitive leakage effect is unavoidable. Since it is common to find tainted measurements, especially among those obtained with textile-enabled instrumentation, it is important to find viable methods to avoid their effect. The three methods studied showed that they could reduce the effect of tainted measurements.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2011. xviii, 42 p.
Series
Trita-STH : report, ISSN 1653-3836 ; 2011:6
Keyword
Physiological measurements, Bioimpedance, modelling, textiles
National Category
Medical Laboratory and Measurements Technologies
Identifiers
urn:nbn:se:kth:diva-90884 (URN)978-91-7501-230-8 (ISBN)
Presentation
2012-02-28, 4X, Alfred Nobels Allé 8, Huddinge, 11:33 (English)
Opponent
Supervisors
Note
QC 20120313Available from: 2012-03-13 Created: 2012-03-02 Last updated: 2012-03-15Bibliographically approved
2. Improvements in Bioimpedance SpectroscopyData Analysis: Artefact Correction, ColeParameters, and Body Fluid Estimation
Open this publication in new window or tab >>Improvements in Bioimpedance SpectroscopyData Analysis: Artefact Correction, ColeParameters, and Body Fluid Estimation
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The estimation of body fluids is a useful and common practice in the status assessment of diseasemechanisms and treatments. Electrical bioimpedance spectroscopy (EBIS) methods are non-invasive,inexpensive, and efficient alternatives for the estimation of body fluids. However, these methods areindirect, and their robustness and validity are unclear.Regarding the recording of measurements, a controversy developed regarding a spectrum deviationin the impedance plane, which is caused by capacitive leakage. This deviation is frequentlycompensated for by the extended Cole model, which lacks a theoretical basis; however, there is nomethod published to estimate the parameters. In this thesis, a simplified model to correct thedeviation was proposed and tested. The model consists of an equivalent capacitance in parallel withthe load.Subsequently, two other measurement artefacts were considered. Both artefacts were frequentlydisregarded with regard to total body and segmental EBIS measurements as their influence isinsignificant with suitable skin-electrode contact. However, this case is not always valid, particularlyfrom a textile-enabled measurement system perspective. In the estimation of body fluids, EBIS dataare fitted to a model to obtain resistances at low and high frequencies. These resistances can berelated to body fluid volumes. In order to minimise the influence of all three artefacts on theestimation of body fluids and improve the robustness and suitability of the model fitting the differentdomains of immittance were used and tested. The conductance in a reduced frequency spectrum wasproposed as the most robust domain against the artefacts considered.The robustness and accuracy of the method did not increase, even though resistances at low and highfrequencies can be robustly estimated against measurement artefacts. Thus, there is likely error in therelation between the resistances and volumes. Based on a theoretical analysis, state of the artmethods were reviewed and their limitations were identified. New methods were also proposed. Allmethods were tested using a clinical database of patients involved in growth hormone replacementtherapy. The results indicated EBIS are accurate methods to estimate body fluids, however they haverobustness limits. It is hypothesized that those limits in extra-cellular fluid are primarily due toanisotropy, in total body fluid they are primarily due to the uncertainty ρi, and errors in intra-cellularfluid are primarily due to the addition of errors in extracellular and total body fluid. Currently, theseerrors cannot be prevented or minimised. Thus, the limitations for robustness must be predicted priorto applying EBIS to estimate body fluids.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 83 p.
Series
Trita-STH : report, ISSN 1653-3836 ; 2013:7
Keyword
Bioimpedance, Cole, Body Fluid
National Category
Medical Engineering
Identifiers
urn:nbn:se:kth:diva-128529 (URN)978-91-7501-874-4 (ISBN)
Public defence
2013-10-04, Sal 3-264, Alfred Nobels allé 10, Fremingsberg, 13:00 (English)
Opponent
Supervisors
Note

QC 20130917

Available from: 2013-09-17 Created: 2013-09-12 Last updated: 2013-09-17Bibliographically approved

Open Access in DiVA

RUBU-EBMC-2010(480 kB)627 downloads
File information
File name FULLTEXT01.pdfFile size 480 kBChecksum SHA-512
60c9d652ec9c7d9ee278d74959f04beea65f9acafda275f838e251a1683fb46512f557d1d8b8d374f755b677ffd073bd5a4db64c2e8cfe126b1f36dcf9a79683
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedIEEEXplore

Authority records BETA

Seoane, Fernando

Search in DiVA

By author/editor
Seoane, FernandoBuendia, Ruben
By organisation
Medical sensors, signals and systems (MSSS)
Medical Laboratory and Measurements Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 627 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
isbn
urn-nbn

Altmetric score

doi
pubmed
isbn
urn-nbn
Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf