Change search
ReferencesLink to record
Permanent link

Direct link
On the Mechanism of Ruthenium-Catalyzed Formation of Hydrogen from Alcohols: A DFT Study
Rhein Westfal TH Aachen, Inst Organ Chem.
2010 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 45, 13487-13499 p.Article in journal (Refereed) Published
Abstract [en]

The mechanism of the ruthenium-catalyzed dehydrogenation of methanol has been investigated by using three DFT-based methods. Three pathways were considered in which the ruthenium catalyst was ligated by either two or three phosphine ligands. Dispersion interactions, which are not described by the popular B3LYP functional, were taken into account by using the dispersion-corrected B3LYP-D and M06 density functionals. These interactions were found to be important in the description of reaction steps that involved ligand/substrate/product association with or dissociation from the catalyst. In line with experimental results, the resting state of the catalyst was predicted to be a ruthenium trihydride complex. It is shown that the dehydrogenation reaction preferentially proceeds through pathways in which the catalyst is ligated by two phosphine ligands. The catalytic cycle of the dehydrogenation process involves an inter-molecular proton transfer from the methanol substrate to the catalyst followed by the release of dihydrogen. Rate-determining beta-hydride elimination from the resulting methoxide species then regenerates the resting state of the catalyst and completes the catalytic cycle. The overall free-energy barriers of 29.6-31.4 kcal mol(-1) predicted by the three density functionals are in good agreement with the experimentally observed reaction rate of 6 h(-1) at 423 K.

Place, publisher, year, edition, pages
2010. Vol. 16, no 45, 13487-13499 p.
Keyword [en]
dehydrogenation, dispersion interactions, hydrogen, reaction mechanisms, ruthenium
National Category
Theoretical Chemistry
URN: urn:nbn:se:kth:diva-77643DOI: 10.1002/chem.201000593ISI: 000285398400027OAI: diva2:491930
QC 20120208Available from: 2012-02-07 Created: 2012-02-07 Last updated: 2012-02-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, Adam Johannes
In the same journal
Chemistry - A European Journal
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link