Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantifying the effects of the self-interaction error in density functional theory: When do the delocalized states appear? II. Iron-oxo complexes and closed-shell substrate molecules
Stockholm Univ, Dept Phys.
Stockholm Univ, Dept Phys.
Stockholm Univ, Dept Phys.
2008 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 129, no 15, 154301- p.Article in journal (Refereed) Published
Abstract [en]

Effects of the self-interaction error (SIE) in approximate density functional theory have several times been reported and quantified for the dissociation of charged radicals, charge transfer complexes, polarizabilities, and for transition states of reactions involving main-group molecules. In the present contribution, effects of the SIE in systems composed of a catalytic transition metal complex and a closed-shell substrate molecule are investigated. For this type of system, effects of the SIE have not been reported earlier. It is found that although the best density functionals (e.g., B3LYP) are capable of accurate predictions of structure, thermodynamics, and reactivity of such systems, there are situations and systems for which the magnitude of the SIE can be large, and for which the effects can be severe for the modeling of chemical reactivity. The largest energetic effect reported here is the artificial stabilization of a catalyst-substrate complex by as much as 18 kcal/mol. Also, the disappearance of significant energy barriers for hydrogen atom transfer in certain systems are reported. In line with earlier work, it is found that the magnitude of the SIE is related to the energetics of electron transfer between the metal catalyst and the substrate molecule. It is suggested that these problems might be circumvented by the inclusion of counterions or point charges that would alter the energetics of electron transfer. It is also pointed out that the effects of SIE in the modeling of transition metal reactivity need to be investigated further. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991180]

Place, publisher, year, edition, pages
2008. Vol. 129, no 15, 154301- p.
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-77645DOI: 10.1063/1.2991180ISI: 000260280600018OAI: oai:DiVA.org:kth-77645DiVA: diva2:491931
Note
QC 20120208Available from: 2012-02-07 Created: 2012-02-07 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, Adam Johannes
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf