Change search
ReferencesLink to record
Permanent link

Direct link
Resistive g-modes and RFP confinement
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.ORCID iD: 0000-0001-6379-1880
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
2009 (English)Conference paper (Other academic)
Abstract [en]

The role of pressure driven resistive modes in the reversed-field pinch remains unclear. It was early shown that unstable resistive g-modes would always exist for an inwardly directed pressure gradient. It now appears that pressure profile smoothing, due to incluson of heat conductivity terms in the energy equation, enables completey stable RFP states at moderate plasma beta. These calculations, apart from being restricted to linearized perturbations, suffer from the use of rather forced scalings, thus their accuracy can be questioned. Also, they have so far only been applied to conventional RFP states, where confinement-limiting tearing fluctuations maintain the reversed axial magnetic field. In the advanced RFP, current profile control has largely eliminated current driven tering modes. Fully nonlinear, numerical studies have shown that energy confinement and poloidal beta increase substantially, but that weak residual modes usually remain. The nature of these residual modes, which limit energy confinement, is studied using a novel semi-analytical, spectral scheme for solving the resistive MHD equations; the generalized weighted residual method (GWRM). Results from the analysis as well as comparisons with the competing linear resistive g-mode theories will be presented.

Place, publisher, year, edition, pages
National Category
Fusion, Plasma and Space Physics
URN: urn:nbn:se:kth:diva-78487OAI: diva2:492539
51st Annual Meeting of the APS Division of Plasma Physics, Atlanta, Georgia, USA 2-6 November, 2009
QC 20120209Available from: 2012-02-08 Created: 2012-02-08 Last updated: 2012-02-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Scheffel, JanMIrza, Ahmed A.
By organisation
Fusion Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 63 hits
ReferencesLink to record
Permanent link

Direct link