Change search
ReferencesLink to record
Permanent link

Direct link
RDS-SUMO: From lofting to physics-based grids
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Aerodynamics. (Aerodynamics)ORCID iD: 0000-0003-4991-5503
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Aerodynamics. (Aerodynamics)
2012 (English)In: Aircraft Engineering, ISSN 0002-2667, Vol. 84, no 3, 140-150 p.Article in journal (Refereed) Published
Abstract [en]

Purpose - The goal for this paper is to bring the easy-to-use geometry drawing software RDS to a "solid" mesh, which could be analyzed and simulated in CEASIOM, to enhance both CEASIOM and RDS's capabilities. Design/methodology/approach - The RDS-SUMO interface is developed based on the feature that both RDS and SUMO define their geometric model using cross-sectional information, i.e. their "universe" shapes are close to each other. Findings - The translation is automated and allows the engineer to easily modify and augment the geometry in the process. Two test cases are shown, with their high quality Euler mesh and CFD computations. The A321-look-alike test case tests the mesh quality for transonic aerodynamics, such as high-speed trim and drag divergence; the twin-prop asymmetric aircraft is a "diffi+cult" non-conventional configuration analyzed for yaw stability in one-engine out mode. Practical implications - This paper shows that the CFD solutions based on solid grids could be obtained once the design is proposed and the RDS wireframe model is available. The aerodynamic properties can then be predicted in early design stage, which is very efficient for preliminary aircraft design. Originality/value - This fast meshing tool could obtain "working" grids of a new design within hours.

Place, publisher, year, edition, pages
2012. Vol. 84, no 3, 140-150 p.
Keyword [en]
Computer software, Aircraft, Design, RDS, SUMO, Geometry modelling, Fast meshing, Euler computation
National Category
Aerospace Engineering
URN: urn:nbn:se:kth:diva-78954DOI: 10.1108/00022661211221996ISI: 000305871700003ScopusID: 2-s2.0-84861371747OAI: diva2:493107
QC 20120730Available from: 2012-02-08 Created: 2012-02-08 Last updated: 2015-05-28Bibliographically approved
In thesis
1. Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design
Open this publication in new window or tab >>Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The thesis develops computational tools for early stages of the aircraft design process. The work focuses on a framework which allows several design teams concurrently to develop a baseline concept into a configuration which meets requirements and whose aerodynamics has been assessed by flight simulation. To this end, a data base format suggested by the German Aerospace Center DLR was adopted in the CEASIOM system, developed in the EU 6th Framework Program, enabling more accurate transonic analysis and tabulation of forces and moments as well as control surface authority assessment. Results from simple, fast models are combined with computationally expensive full CFD results by co-Kriging to speed up productionof the aero-data for flight simulation.

Non-linear optimization methods in wing design play an increasingly important role together with computational aerodynamics. High performance computing enables the use of high-fidelity non-linear flow predictions in optimization loops. It is argued that the optimization tools should allow the engineer to influence the process by setting up suitable target pressure distributions for the shape to approach, combined with steps to minimize drag under suitable constraints on geometry, forces, and moments. The simulation framework incorporated into CEASIOM was applied to a number of configurations, conventional as well as un-conventional, such as an a-symmetric twin prop, a canard-configured transonic cruiser, and a novel chinrudder concept for transonic airliners. Aerodynamic shape design by the developed methods was applied to the standard M6 benchmark wing, a joined-wing concept, a wing-tip, and a blended wing-body.

Abstract [sv]

Avhandlingen utvecklat beräkningsmoduler för tidiga stadier i flygplanskonstruktionsprocessen. Arbetet kocentreras på ett program-ramverk som låter flera designteam samtidigt utveckla en grund-modell till en konfiguration som uppfyller ställda krav och vars aerodynamik har undersökts med flygsimulering. För att nå detta mål antogs ett data-bas format utarbetat av DLR (German Aerospace Center) i CEASIOM-programpaketet som utvecklats i EUs sjätte ramprogram. Det möjliggjorde noggrannare analys och framtagning av tabeller över krafter och moment liksom bedömning av styrytors funktion i transoniskt fartområde. Resultat från enkla, snabba beräknngsmodeller kombineras via co-Kriging med beräkningsmässigt dyra CFD-körningar för att snabbt ta fram aero-data som behövs för flygsimuleringen.

Icke-linjär optimering spelar allt större roll i ving-formgivning, tillsammans med numerisk aerodynamik. Högpresterande datorer medger användning av noggranna icke-linjära strömningsmodeller också i optimerings-slingor. Det argumenteras för att optimerings-verktygen skall ge ingenjörerna direkt inflytande över processen genom definition av fördelaktiga tryckfördelningar som vingformen ska åstadkomma, kombinerat med steg som minimerar luftmotstånd under bivillkor på geometri, krafter och moment.

Simulerings-ramverket implementerat i CEASIOM tillämpas så på ett antal konfigurationer, konventionella såväl som o-konventionella: ett osymmetriskt tvåmotorigt propellerplan, och större transoniska flygplan, ett för Mach 0.97 med canardvinge, och ett nytt koncept med hak-roder.

Aerodynamisk formgivning med de utvecklade metoderna tillämpas på standardfallet M6-vingen, en transonisk dubbel-vinge, en vingtipp, och en flygande vinge.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xx, 101 p.
TRITA-AVE, ISSN 1651-7660 ; 2015:27
National Category
Aerospace Engineering
Research subject
Aerospace Engineering
urn:nbn:se:kth:diva-168169 (URN)978-91-7595-606-0 (ISBN)
Public defence
2015-06-12, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:15 (English)

QC 20150528

Available from: 2015-05-28 Created: 2015-05-27 Last updated: 2015-05-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhang, MengmengRizzi, Arthur
By organisation
In the same journal
Aircraft Engineering
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 75 hits
ReferencesLink to record
Permanent link

Direct link