Change search
ReferencesLink to record
Permanent link

Direct link
Interface defects in HfO2, LaSiOx, and Gd2O3 high-k/metal-gate structures on silicon
AMO GmbH, AMICA, Aachen, Germany.
Show others and affiliations
2008 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, Vol. 155, no 2, G13-G20 p.Article in journal (Refereed) Published
Abstract [en]

In this work, we present experimental results examining the energy distribution of the relatively high (> 1 X 10(11) cm(-2)) electrically active interface defects which are commonly observed in high-dielectric-constant (high-k) metal-insulator-silicon systems during high-k process development. This paper extends previous studies on the Si(100)/SiOx/HfO2 system to include a comparative analysis of the density and energy distribution of interface defects for HfO2, lanthanum silicate (LaSiOx), and Gd2O3 thin films on (100) orientation silicon formed by a range of deposition techniques. The analysis of the interface defect density across the energy gap, for samples which experience no H-2/N-2 annealing following the gate stack formation, reveals a peak density (similar to 2 X 10(12) cm(-2) eV(-1) to similar to 1 X 10(13) cm(-2) eV(-1)) at 0.83-0.92 eV above the silicon valence bandedge for the HfO2, LaSiOx, and Gd2O3 thin films on Si (100). The characteristic peak in the interface state density (0.83-0.92 eV) is obtained for samples where no interface silicon oxide layer is observed from transmission electron microscopy. Analysis suggests silicon dangling bond (P-bo) centers as the common origin for the dominant interface defects for the various Si(100)/SiOx/high-k/metal gate systems. The results of forming gas (H-2/N-2) annealing over the temperature range 350-555 degrees C are presented and indicate interface state density reduction, as expected for silicon dangling bond centers. The technological relevance of the results is discussed. (c) 2007 The Electrochemical Society.

Place, publisher, year, edition, pages
2008. Vol. 155, no 2, G13-G20 p.
National Category
Nano Technology
URN: urn:nbn:se:kth:diva-50513DOI: 10.1149/1.2806172ISI: 000251906800050OAI: diva2:495394
QC 20120209Available from: 2012-02-08 Created: 2011-12-06 Last updated: 2012-02-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lemme, Max C.
In the same journal
Journal of the Electrochemical Society
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link