Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Projective Geometric Computing
(MEDIETEKN O INTERAKTIONSDESIGN)
2000 (English)Conference paper, Published paper (Refereed)
Abstract [en]

This paper applies geometric algebra to the geometry of conics in the plane. Starting from the classical double algebra expression for a conic on 5 points P i E P2(R) in terms of a running variable, we show how to eliminate this variable (by the use of tensor products) and express the conic on 5 points without resorting to a running variable. Writing P= {P1, P2, P3, P4, P5} , and designating the conic by Q P , the homogeneous point equation of Q P can be expressed as Qp (X)=O , where

Place, publisher, year, edition, pages
2000.
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-80309OAI: oai:DiVA.org:kth-80309DiVA: diva2:496204
Conference
Siggraph2000
Note
NR 20140805Available from: 2012-02-09 Created: 2012-02-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Naeve, Ambjörn
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf