Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploiting Sparse Dependence Structure in Model Based Classification
Dept. of Statistics, Stockholm University, Sweden.
2010 (English)In: COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS / [ed] Borgelt, C; GonzalezRodriguez, G; Trutschnig, W; Lubiano, MA; Gil, MA; Grzegorzewski, P; Hryniewicz, O, 2010, 509-517 p.Conference paper, Published paper (Refereed)
Abstract [en]

Sparsity patterns discovered in the data dependence structure were used to reduce the dimensionality and improve performance accuracy of the model based classifier in a high dimensional framework.

Place, publisher, year, edition, pages
2010. 509-517 p.
Series
Advances in Intelligent and Soft Computing, ISSN 1867-5662 ; 77
Keyword [en]
Classification, High dimensionality, Sparsity, Lasso, Variable selection
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:kth:diva-80818DOI: 10.1007/978-3-642-14746-3_63ISI: 000289216000063OAI: oai:DiVA.org:kth-80818DiVA: diva2:496775
Conference
1st International Workshop on Soft Methods in Probability and Statistics (SMPS 2002). WARSAW, POLAND. SEP, 2002
Note
QC 20120302Available from: 2012-02-10 Created: 2012-02-10 Last updated: 2012-03-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pavlenko, Tatjana
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf