Change search
ReferencesLink to record
Permanent link

Direct link
A review of genetic algorithms in near infrared spectroscopy and chemometrics: past and future
Department of Electrical Engineering and Automation, University of Vaasa.
Department of Electrical Engineering and Automation, University of Vaasa.
Department of Electrical Engineering and Automation, University of Vaasa.
2008 (English)In: Journal of Near Infrared Spectroscopy, ISSN 0967-0335, Vol. 16Article in journal (Refereed) Published
Abstract [en]

Global optimisation and search problems are abundant in science and engineering, including spectroscopy and its applications. Therefore, it is hardly surprising that general optimisation and search methods such as genetic algorithms (GAs) have also found applications in the area of near infrared INIRI spectroscopy. A brief introduction to genetic algorithms, their objectives and applications in NIR spectroscopy, as well as in chemometrics, is given. The most popular application for GAs in NIR spectroscopy is wavelength, or more generally speaking, variable selection. GAs are both frequently used and convenient in multi-criteria optimisation; for example, selection of pre-processing methods, wavelength inclusion, and selection of Latent variables can be optimised simultaneously. Wavelet transform has recently been applied to pre-processing of NIR data. In particular, hybrid methods of wavelets and genetic algorithms have in a number of research papers been applied to pre-processing, wavelength selection and regression with good success. In all calibrations and, in particular, when optimising, it is essential to validate the model and to avoid over-fitting. GAs have a Large potential when addressing these two major problems and we believe that many future applications will emerge. To conclude, optimisation gives good opportunities to simultaneously develop an accurate calibration model and to regulate model complexity and prediction ability within a considered validation framework.

Place, publisher, year, edition, pages
2008. Vol. 16
Keyword [en]
Genetic algorithms, Near-infrared spectroscopy
National Category
Computer Science
URN: urn:nbn:se:kth:diva-80750DOI: 10.1255/jnirs.778ISI: 000257989400008OAI: diva2:496808
QC 20120210Available from: 2012-02-10 Created: 2012-02-10 Last updated: 2012-02-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textElectronic full text

Search in DiVA

By author/editor
Nordling, Torbjörn E MAlander, Jarmo
In the same journal
Journal of Near Infrared Spectroscopy
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 137 hits
ReferencesLink to record
Permanent link

Direct link