Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metal organic framework (MOF) liquid crystals: 1D, 2D and 3D ionic coordination polymer structures in the thermotropic mesophases of metal soaps, including alkaline earth, transition metal and lanthanide soaps
Applied Mathematics Research School of Physical Sciences and Engineering Australian National University, Canberra, Australia.
2008 (English)In: Current Opinion in Colloid & Interface Science, ISSN 1359-0294, E-ISSN 1879-0399, Vol. 13, no 4, 288-302 p.Article in journal (Refereed) Published
Abstract [en]

aken together, the body of existing literature on metal soap crystal structures and mesophases supports the view that much is to be gained by treating the soaps as metal organic frameworks (MOF's) when relating their structure and liquid crystallinity. We argue that metal soaps mesophases often consist of disordered metal organic (carboxylate) frameworks (MOF's). Metal atoms are linked by bridging carboxylates, and the metal-oxygen networks form semi-flexible rods, chains and sheets of M-O polyhedra within their co-bonded, mesotructured, self-assemblies of lipidic chains. The packing of the molten hydrocarbon chains allows otherwise unconnected MOF networks to coexist as spatially isolated units in the same unit cell. For instance the lamellar phases are true 2D MOF's or layers of 1-D MOF's. The phase transitions can then be regarded as coupled disordering/re-ordering transitions involving rotational and conformational disordering of the hydrocarbon chains balanced with disordering of MOF symmetries, MOF topological transformations, depolymerizations and dimensionality reductions ultimately leading to anisotropic melts. By way of demonstration, thermotropic phase transitions of homologous series of lanthanide soaps are systematically studied using a variety of experimental methods, and the data are used in a topological model for testing the consistency with the MOF concept of metal soap crystal structures and thermotropic: mesophases. Finally, an interpenetrating bicontinuous MOF comprised of SrO6 polyhedral rods is presented as an atomically resolved model for the network topology of the cubic mesophase of strontium soaps. Metal soaps are therefore shown to afford a bridge between liquid crystals and metal organic framework (MOF) materials. 

Place, publisher, year, edition, pages
2008. Vol. 13, no 4, 288-302 p.
Keyword [en]
review lanthanide carboxylic acid complex MOF liq crystal transition
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-78150DOI: 10.1016/j.cocis.2008.03.001ISI: 000257565700012OAI: oai:DiVA.org:kth-78150DiVA: diva2:497395
Note
CAPLUS AN 2008:731715(Journal; General Review). QC 20120215Available from: 2012-02-10 Created: 2012-02-07 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Corkery, Robert W.
In the same journal
Current Opinion in Colloid & Interface Science
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf