Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Production of dissolving grade pulps from non-wood paper grade pulps using enzymatic and chemical pre-treatments for the viscose process
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
Show others and affiliations
2010 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Cellulose is the most abundant biorenewable material, constitutes an important polymer since it is used as raw material for several products, e.g.  Paper and board but also cellulose-based products which have many important applications in the pharmaceutical, textile, food and paint industries.  A raw material with high cellulose content and low content of hemicelluloses, residual lignin, extractives and minerals is required for the prodn. of these products, e.g.  Cotton and dissolving grade pulp are used.  However, the high cost prodn. of dissolving grade pulps has aroused the possibility of upgrading paper grade pulps into dissolving pulps by selective removal of hemicelluloses and subsequent activation of the pulps.  This study reports the feasibility to produce dissolving grade pulps from different pulps, i.e.  Non-wood paper grade pulps and conventional hardwood kraft pulps, employing enzymic and chem. pretreatments.  A monocomponent endoglucanase and a xylanase followed by alk. extn. were tested in order to increase the accessibility and reactivity of the cellulose pulp and decrease the hemicellulose content, resp.  An optimization of these treatments in terms of enzyme dosage, incubation time and a possible combination of them was investigated.  The treatment effects on reactivity according to Fock's method, viscosity, hemicellulose content and mol. wt. distribution, using size exclusion chromatog. (SEC), were analyzed.  The characterization of cellulose structure after the enzymic and chem. treatments was investigated by different techniques.

Place, publisher, year, edition, pages
2010.
National Category
Polymer Technologies Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-76719OAI: oai:DiVA.org:kth-76719DiVA: diva2:497691
Conference
239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010
Note

QC 20120420

Available from: 2012-02-10 Created: 2012-02-06 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Larsson, Per Tomas

Search in DiVA

By author/editor
Ek, MonicaIbarra, DavidKöpcke, VivianaLarsson, Per TomasJääskeläinen, Anna-Stiina
By organisation
Wood Chemistry and Pulp Technology
Polymer TechnologiesPolymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 177 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf