Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A {$q$}-analogue of the {FKG} inequality and some applications
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-7497-2764
2011 (English)In: Combinatorica, ISSN 0209-9683, E-ISSN 1439-6912, Vol. 31, no 2, 151-164 p.Article in journal (Refereed) Published
Abstract [en]

Let L be a finite distributive lattice and mu: L -> R(+) a log-supermodular function k: L -> R(+) let [GRAPHICS] We prove for any pair g, h: L -> R(+) of monotonely increasing functions, that E mu(g; q) . E mu(h; q) << E mu(1; q) . E mu(gh; q), where "<<" denotes coefficientwise inequality of real polynomials. The FKG inequality of Fortuin, Kasteleyn and Ginibre (1971) is the real number inequality obtained by specializing to q=1. The polynomial FKG inequality has applications to f-vectors of joins and intersections of simplicial complexes, to Betti numbers of intersections of Schubert varieties, and to correlation-type inequalities for a class of power series weighted by Young tableaux. This class contains series involving Plancherel measure for the symmetric groups and its poissonization.

Place, publisher, year, edition, pages
2011. Vol. 31, no 2, 151-164 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-82460DOI: 10.1007/s00493-011-2644-1ISI: 000293788700002Scopus ID: 2-s2.0-80051510904OAI: oai:DiVA.org:kth-82460DiVA: diva2:498257
Note
QC 20120220Available from: 2012-02-11 Created: 2012-02-11 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://dx.doi.org/10.1007/s00493-011-2644-1

Authority records BETA

Björner, Anders

Search in DiVA

By author/editor
Björner, Anders
By organisation
Mathematics (Div.)
In the same journal
Combinatorica
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf