Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails
Stanford University, Stockholm University.
Stockholm University.ORCID iD: 0000-0002-2734-2794
Stanford University.
2010 (English)In: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 6, no 6, e1000829- p.Article in journal (Refereed) Published
Abstract [en]

Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.

Place, publisher, year, edition, pages
2010. Vol. 6, no 6, e1000829- p.
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-82592DOI: 10.1371/journal.pcbi.1000829ISI: 000279341000035PubMedID: 20585620OAI: oai:DiVA.org:kth-82592DiVA: diva2:498391
Note
QC 20120216Available from: 2012-02-12 Created: 2012-02-12 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Lindahl, Erik

Search in DiVA

By author/editor
Lindahl, Erik
In the same journal
PloS Computational Biology
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf