Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Internal duplications in α-helical membrane protein topologies are common but the nonduplicated forms are rare.
Stockholm University.
Stockholm University.
Stockholm University.ORCID iD: 0000-0002-2734-2794
Stockholm University.
2010 (English)In: Protein science : a publication of the Protein Society, ISSN 1469-896X, Vol. 19, no 12, 2305-18 p.Article in journal (Refereed) Published
Abstract [en]

Many α-helical membrane proteins contain internal symmetries, indicating that they might have evolved through a gene duplication and fusion event. Here, we have characterized internal duplications among membrane proteins of known structure and in three complete genomes. We found that the majority of large transmembrane (TM) proteins contain an internal duplication. The duplications found showed a large variability both in the number of TM-segments included and in their orientation. Surprisingly, an approximately equal number of antiparallel duplications and parallel duplications were found. However, of all 11 superfamilies with an internal duplication, only for one, the AcrB Multidrug Efflux Pump, the duplicated unit could be found in its nonduplicated form. An evolutionary analysis of the AcrB homologs indicates that several independent fusions have occurred, including the fusion of the SecD and SecF proteins into the 12-TM-protein SecDF in Brucella and Staphylococcus aureus. In one additional case, the Vitamin B12 transporter-like ABC transporters, the protein had undergone an additional fusion to form protein with 20 TM-helices in several bacterial genomes. Finally, homologs to all human membrane proteins were used to detect the presence of duplicated and nonduplicated proteins. This confirmed that only in rare cases can homologs with different duplication status be found, although internal symmetry is frequent among these proteins. One possible explanation is that it is frequent that duplication and fusion events happen simultaneously and that there is almost always a strong selective advantage for the fused form.

Place, publisher, year, edition, pages
2010. Vol. 19, no 12, 2305-18 p.
National Category
Bioinformatics and Systems Biology
Identifiers
URN: urn:nbn:se:kth:diva-82590DOI: 10.1002/pro.510ISI: 000284793800005PubMedID: 20882639OAI: oai:DiVA.org:kth-82590DiVA: diva2:498394
Note
QC 20120217Available from: 2012-02-12 Created: 2012-02-12 Last updated: 2012-02-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Lindahl, Erik

Search in DiVA

By author/editor
Lindahl, Erik
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf