Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Hybrid Integrated Multi-Objective Optimization Procedure for Estimating Nadir Point
Department of Mathematical Information Technology, University of Jyväskylä.
2009 (English)In: Evolutionary Multi-Criterion Optimization / [ed] Fonseca, C.M.; Gandibleux, X.; Hao, J.-K.; Sevaux, M, Springer, 2009, 569-583 p.Conference paper, Published paper (Refereed)
Abstract [en]

A nadir point is constructed by the worst objective values of the solutions of the entire Pareto-optimal set. Along with the ideal point, the nadir point provides the range ofobjective values within which all Pareto-optimal solutions must lie. Thus, a nadir point is an important point to researchers and practitioners interested in multi-objectiveoptimization. Besides, if the nadir point can be computed relatively quickly, it can be used to normalize objectives in many multi-criterion decision making tasks. Importantly,estimating the nadir point is a challenging and unsolved computing problem in case of more than two objectives. In this paper, we revise a previously proposed serial application of an EMO and a local search method and suggest an integrated approach for finding the nadir point. A local search procedure based on the solution of a bi-level achievement scalarizing function is employed to extreme solutions in stabilized populations in an EMO procedure. Simulation results on a number of problems demonstrate the viability and working of the proposed procedure. 

Place, publisher, year, edition, pages
Springer, 2009. 569-583 p.
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 5467
Keyword [en]
Ideal points, Integrated approach, Local search, Local search method, Multi-Criterion, Pareto optimal solutions, Pareto-optimal sets, Scalarizing function, Simulation result
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-82954DOI: 10.1007/978-3-642-01020-0_44ISI: 000265784100039ISBN: 978-3-642-01019-4 (print)OAI: oai:DiVA.org:kth-82954DiVA: diva2:498617
Conference
5th International Conference, EMO 2009
Note
QC 20120215Available from: 2012-02-12 Created: 2012-02-12 Last updated: 2012-02-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Miettinen, Kaisa
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf