Change search
ReferencesLink to record
Permanent link

Direct link
An in vitro setup to test the relevance and the accuracy of low-order vocal folds models
Eindhoven University of Technology.ORCID iD: 0000-0002-3609-3005
Show others and affiliations
2007 (English)In: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, Vol. 121, no 1, 479-490 p.Article in journal (Refereed) Published
Abstract [en]

An experimental setup and human vocal folds replica able to produce self-sustained oscillations are presented. The aim of the setup is to assess the relevance and the accuracy of theoretical vocal folds models. The applied reduced mechanical models are a variation of the classical two-mass model, and a simplification inspired on the delayed mass model for which the coupling between the masses is expressed as a fixed time delay. The airflow is described as a laminar flow with flow separation. The influence of a downstream resonator is taken into account. The oscillation pressure threshold and fundamental frequency are predicted by applying a stability analysis to the mechanical models. The measured frequency response of the mechanical replica together with the initial (rest) area allows us to determine the model parameters (spring stiffness, damping, geometry, masses). Validation of theoretical model predictions to experimental data shows the relevance of low-order models in gaining a qualitative understanding of phonation. However, quantitative discrepancies remain large due to an inaccurate estimation of the model parameters and the crudeness in either flow or mechanical model description. As an illustration it is shown that significant improvements can be made by accounting for viscous flow effects.

Place, publisher, year, edition, pages
2007. Vol. 121, no 1, 479-490 p.
Keyword [en]
Laminar flow, Mathematical models, Natural frequencies, Speech analysis, Viscous flow, Airflow, Flow separation, Human vocal folds, Self-sustained oscillations, Oscillations, accuracy, analysis, article, geometry, human, in vitro study, mass, oscillation, parameter, phonation, pressure, priority journal, qualitative analysis, respiratory airflow, rigidity, statistical significance, theoretical model, validation process, viscosity, vocal cord, Humans, Models, Biological, Periodicity, Speech Acoustics, Vocal Cords
National Category
Applied Mechanics
URN: urn:nbn:se:kth:diva-66762DOI: 10.1121/1.2384846ISI: 000243761900045PubMedID: 17297802OAI: diva2:498921
QC 20120221Available from: 2012-02-12 Created: 2012-01-27 Last updated: 2012-02-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Lopez-Arteaga, Ines
In the same journal
Journal of the Acoustical Society of America
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link