Change search
ReferencesLink to record
Permanent link

Direct link
Experimental validation of some issues in lip and vocal fold physical models
Show others and affiliations
2007 (English)In: Acta Acoustica united with Acustica, ISSN 1610-1928, Vol. 93, no 2, 314-323 p.Article in journal (Refereed) Published
Abstract [en]

Insight into vocal fold and lip oscillation mechanisms is important for the understanding of phonation and the sound generation process in brass musical instruments. In general, a simplified analysis of the physical 3D fluid-structure interaction process between the living tissues and the airflow is favoured by most workers. Several simple models (lumped parameter models) have been proposed and these represent the tissues as a distribution of elastic mass(es). The mass-spring-damper system is acted on by a driving force resulting from the pressure exerted by the airstream. The results from these theoretical models have been validated 'in-vitro' using rigid or deformable replicas mounted in a suitable experimental set-up. Previous research by the authors focused on the prediction of the pressure threshold and oscillation frequency of an 'in-vitro' replica, in the absence and presence of acoustical feedback. In the theoretical model a lip or vocal fold is represented as a simple lumped mass system. The model yielded accurate prediction of the oscillation threshold and frequency. In this paper a new 'in-vitro' set-up is presented, which overcomes some of the limitations of the previous study. By the use of a digital camera synchronised with a light source and of pressure sensors, this set-up allows 1) measurement of the area of the replica opening and 2) imposition of independent initial conditions, such as height of the initial opening and internal pressure in the replica. The impact of these findings on physical modelling is discussed.

Place, publisher, year, edition, pages
2007. Vol. 93, no 2, 314-323 p.
Keyword [en]
Biological organs, Musical instruments, Natural frequencies, Pressure sensors, Tissue, Vibration analysis, Lumped parameter models, Oscillation frequency, Oscillation threshold, Physical modelling, Speech processing
National Category
Fluid Mechanics and Acoustics
URN: urn:nbn:se:kth:diva-66761ISI: 000245572900014OAI: diva2:498945
QC 20120301Available from: 2012-02-12 Created: 2012-01-27 Last updated: 2012-03-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Search in DiVA

By author/editor
Lopez Arteaga, Ines
In the same journal
Acta Acoustica united with Acustica
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link