Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Novel type II cell wall architecture in dichlobenil-habituated maize calluses
Universidad de León.
Show others and affiliations
2009 (English)In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 229, no 3, 617-631 p.Article in journal (Refereed) Published
Abstract [en]

Growth of maize (Zea mays L.) callus-culture cells was inhibited using dichlobenil (2,6 dichlorobenzonitrile, DCB) concentrations > or =1 microM; I (50) value for the effect on inhibited fresh weight gain was 1.5 microM. By increasing the DCB concentration in the culture medium, DCB-habituated cells became 13 times more tolerant of the inhibitor (I (50): 20 microM). In comparison with non-habituated calluses, DCB-habituated calluses grew slower, were less friable and were formed by irregularly shaped cells surrounded by a thicker cell wall. By using an extensive array of techniques, changes in type II cell wall composition and structure associated with DCB habituation were studied. Walls from DCB-habituated cells showed a reduction of up to 75% in cellulose content, which was compensated for by a net increase in arabinoxylan content. Arabinoxylans also showed a reduction in their extractability and a marked increase in their relative molecular mass. DCB habituation also involved a shift from ferulate to coumarate-rich cells walls, and enrichment in cell wall esterified hydroxycinnamates and dehydroferulates. The content of polymers such as mixed-glucan, xyloglucan, mannans, pectins or proteins did not vary or was reduced. These results prove that the architecture of type II cell walls is able to compensate for deficiencies in cellulose content with a more extensive and phenolic cross-linked network of arabinoxylans, without necessitating beta-glucan or other polymer enhancement. As a consequence of this modified architecture, walls from DCB-habituated cells showed a reduction in their swelling capacity and an increase both in pore size and in resistance to polysaccharide hydrolytic enzymes.

Place, publisher, year, edition, pages
2009. Vol. 229, no 3, 617-631 p.
Keyword [en]
Arabinoxylan, Callus culture, Cellulose, Dichlobenil, FTIR, Maize
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:kth:diva-66496DOI: 10.1007/s00425-008-0860-8ISI: 000262830800014PubMedID: 19048286OAI: oai:DiVA.org:kth-66496DiVA: diva2:499033
Note
QC 20120217Available from: 2012-02-13 Created: 2012-01-26 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Mélida, Hugo
In the same journal
Planta
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf