Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of rapid spanwise rotation on turbulent channel flow with a passive scalar
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-9819-2906
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-9627-5903
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-2711-4687
2011 (English)In: Proc. 7th International Symposium on Turbulence and Shear Flow Phenomena, 2011Conference paper, Published paper (Refereed)
Abstract [en]

Direct numerical simulations of fully developed turbulentchannel flow including a passive scalar rotating about thespanwise axis have been performed. The mean bulk Reynoldsnumber, Reb = Ubh/n ≥ 20000, where Ub is the bulk meanvelocity and h the channel half width, is higher than in previoussimulations and the rotation rate covers a wide range.At moderate rotation rates, turbulence on the stable channelside is significantly less damped than in DNS at lower Reb. Athigh rotation rates we observe re-occurring, quasi-periodic instabilitieson the stable channel side. Between these events theturbulence is weak, but during the instability events the wallshear stress and turbulence intensity are much stronger. Theinstabilities are caused by structures resembling Tollmien-Schlichting (TS) waves that at some instant rapidly grow, thenbecome unstable and finally break down into intense turbulence.After some time the TS waves form again and the processrepeats itself in a periodic-like manner.Mean scalar profiles are also strongly affected by rotationand large scalar fluctuations are found on the border of the stableand unstable channel side. The turbulent Prandtl/Schmidtnumber of the scalar is much less than unity if there is rotation.Predicting scalar transport in rotating channel flow willtherefore pose a challenge to turbulence models.

Place, publisher, year, edition, pages
2011.
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-86818OAI: oai:DiVA.org:kth-86818DiVA: diva2:501047
Conference
7th International Symposium on Turbulence and Shear Flow Phenomena. 28-31 July 2011. Ottawa, Canada
Note
QC 20120410Available from: 2012-02-13 Created: 2012-02-13 Last updated: 2012-04-10Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.tsfp7.org/papers/8B3P.pdf

Authority records BETA

Brethouwer, GeertSchlatter, PhilippJohansson, Arne

Search in DiVA

By author/editor
Brethouwer, GeertSchlatter, PhilippJohansson, Arne
By organisation
MechanicsLinné Flow Center, FLOW
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf