Change search
ReferencesLink to record
Permanent link

Direct link
Groundwater arsenic in the Lower Ganges Delta Plain in West Bengal, India and Bangladesh: A hydrogeochemical comparison
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.ORCID iD: 0000-0003-4350-9950
Show others and affiliations
2010 (English)In: Geological Society of America: Abstracts with Programs, Vol. 42, No. 5, 2010, 653- p.Conference paper, Abstract (Other academic)
Abstract [en]

Arsenic contaminations in groundwater have been widely reported. The serious arsenic contamination of groundwater of Lower Ganga delta Plain (LGDP) in West Bengal, India and Bangladesh has emerged as a global natural environmental health disaster. The Bengal Delta Plain (BDP) is one of the largest deltas in the world, drained by the Ganges, Brahmaputra and Meghna river (GBM) systems. Groundwater samples were collected from 67 different sites located in the districts of 24-Parganas (S), 24-Parganas (N) and Nadia in West Bengal, India along the western margin (Bhagirathi sub-basin), and 40 different sites located in the districts of Comilla, Laxmipur, Munshiganj, Faridpur and Jhenaida districts of Bangladesh along the eastern part of the Bengal Basin (Padma-Meghna sub-basin).

Groundwater in the Nadia, West Bengal is mostly of Ca–HCO3 type while in the lower part of the delta, the groundwater is of Ca-Mg-SO4 type. The concentrations of major solutes (Na+, Mg2+, Ca2+, K+, HCO3-, SO42-, NO3- and PO43- in groundwater of Meghna sub-basin is more variable than Bhagirathi sub-basin that indicating different hydrological setting in the parts of the Bengal basin. The trace element concentrations such as As, Fe and Mn also show considerable variability in the two distinct parts of the Bengal basin. Most groundwaters of the LGDP contain arsenic above the WHO and the BIS standard of 0.01 mg/L as well as in many case above the Bangladesh drinking water standard (0.05 mg/L). Both sites have moderately reducing environment, with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and nearly similar mechanism in As mobilization. The occurrence of elevated arsenic in groundwater is generally associated with natural biogeochemical reactions (such as reductive dissolution of iron oxides/hydroxides) by altering groundwater redox state and releasing arsenic from sediment to aqueous phase. The various redox-sensitive solutes indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from minerals of sediments, would tend to remain in groundwater because of the complex interplay among the electron acceptors. Also, microbes in organic matter environment are acting as the major electron acceptor, in the Lower Ganges Delta Plain.

Place, publisher, year, edition, pages
2010. 653- p.
National Category
Geotechnical Engineering
URN: urn:nbn:se:kth:diva-87406OAI: diva2:501628
2010 GSA Denver Annual Meeting. Denver, Colorado USA. 31 October – 3 November 2010
QC 20120420Available from: 2012-02-14 Created: 2012-02-14 Last updated: 2012-04-20Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bhattacharya, Prosun
By organisation
Environmental Geochemistry and Ecotechnology
Geotechnical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 79 hits
ReferencesLink to record
Permanent link

Direct link