Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Satellite Monitoring of Urban Land Cover Change in Stockholm Between 1986 and 2006 and Indicator-Based Environmental Assessment
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. (Geoinformatics)
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. (Geoinformatics)
2013 (English)In: Earth Observation of Global Changes (EOGC), Springer Berlin/Heidelberg, 2013, 205-222 p.Chapter in book (Refereed)
Abstract [en]

Over the past few decades, there has been substantial urban growth in Stockholm, Sweden, now the largest city in Scandinavia. This research investigates and evaluates the evolution of land cover/use change in Stockholm between 1986 and 2006 with a particular focus on what impact urban growth has had on the environment using indicators derived from remote sensing and environmental data. Four scenes of SPOT imagery over the Stockholm County area were acquired for this study including two on 13 June 1986, one on 5 August 2006 and one on 4 June 2008. These images are classified into seven land cover categories using an object-based and rule-based approach with spectral data and texture measures as inputs. The classification is then used to generate spatial metrics and environmental indicators for evaluation of fragmentation and land cover/land use change. Based on the environmental indicators, an environmental impact index is constructed for both 1986 and 2006 and then compared. The environmental impact index is based on the proportion and condition of green areas important for ecosystem services, proximity of these areas to intense urban land use, proportion of urban areas in their immediate vicinity, and how impacted they are by noise. The analysis units are then ranked according to their indicator values and an average of the indicator rankings gives an overall index score. Results include a ranking of the landscape in terms of environmental impact in 1986 and 2006, as well as an analysis of which units have improved the least or the most and why. The highest ranked units are located most often to the north and east of the central Stockholm area, while the lowest tend to be located closer to the center itself. Yet units near the center also tended to improve the most in ranking over the two decades, which would suggest a convergence towards modest urban expansion and limited environmental impact.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2013. 205-222 p.
Series
Lecture Notes in Geoinformation and Cartography, ISSN 1863-2246
National Category
Remote Sensing Environmental Management
Identifiers
URN: urn:nbn:se:kth:diva-87792DOI: 10.1007/978-3-642-32714-8_14ISBN: 978-3-642-32713-1 (print)OAI: oai:DiVA.org:kth-87792DiVA: diva2:501896
Note

QC 20121219

Available from: 2012-02-14 Created: 2012-02-14 Last updated: 2014-12-12Bibliographically approved
In thesis
1. Satellie Monitoring of Urban Growth and Indicator-based Assessment of Environmental Impact
Open this publication in new window or tab >>Satellie Monitoring of Urban Growth and Indicator-based Assessment of Environmental Impact
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

One of the major consequences of urbanization is the transformation of land surfaces from rural/natural environments to built-up land that supports diverse forms of human activity. These transformations impact the local geology, climate, hydrology, flora and fauna and human-life supporting ecosystem services in the region. Mapping and analysis of land use/land cover change in urban regions and tracking their environmental impact is therefore of vital importance for evaluating policy options for future growth and promoting sustainable urban development.

The overall objective of this research is to investigate the extent of urban growth and/or sprawl and its potential environmental impact in the regions surrounding a few selected major cities in North America, Europe and Asia using landscape metrics and other environmental indicators to assess the landscape changes. The urban regions examined are the Greater Toronto Area (GTA) in Canada, Stockholm region and County in Sweden and Shanghai in China. The analyses are based on classificatons of optical satellite imagery (Landsat TM/ETM+ or SPOT 1/5) between 1985 and 2010. Maximum likelihood classification (MLC) under urban/rural masks, objectbased image analysis (OBIA) with rule-based classification and support vector machines (SVM) classification methods were used with grey level cooccurrence matrix (GLCM) texture features as input to help obtain higher accuracies. Based on the classification results, landscape metrics, selected environmental indicators and indices, and ecosystem service valuation were calculated and used to estimate environmental impact of urban growth.

The results show that urban areas in the GTA grew by nearly 40% between 1985 and 2005. Results from the landscape metrics and urban compactness indicators show that low-density built-up areas increased significantly in the GTA between 1985 and 2005, mainly at the expense of agricultural areas. The majority of environmentally significant areas were increasingly surrounded by urban areas between 1985 and 2005, furthering their isolation from other natural areas. Urban areas in the Stockholm region increased by 10% between 1986 and 2006. The landscape metrics indicated that natural areas became more isolated or shrank whereas new small urban patches came into being. The most noticeable changes in terms of environmental impact and urban expansion were in the east and north of the study area. Large forested areas in the northeast dropped the most in terms of environmental impact ranking, while the most improved analysis units were close to the central Stockholm area. The study comparing Shanghai and Stockholm County revealed that urban areas increased ten times as much in Shanghai as they did in Stockholm, at 120% and 12% respectively. The landscape metrics results show that fragmentation in both study regions occurred mainly due to the growth of high density built-up areas in previously more natural environments, while the expansion of low density built-up areas was for the most part in conjunction with pre-existing patches. The growth in urban areas resulted in ecosystem service value losses of approximately 445 million USD in Shanghai, mostly due to the decrease in natural coastal wetlands, while in Stockholm the value of ecosystem services changed very little.

This study demonstrates the utility of urban and environmental indicators derived from remote sensing data via GIS techniques in assessing both the spatio-temporal dynamics of urban growth and its environmental impact in different metropolitan regions. High accuracy classifications of optical medium resolution remote sensing data are achieved thanks in part to the incorporation of texture features for both object- and pixel-based classification methods, and to the use of urban/rural masks with the latter. The landscape metrics calculated based on the classifications are useful in quantifying urban growth trends and potential environmental impact as well as facilitating their comparison. The environmental indicator results highlight the challenges in terms of sustainable urban growth unique to each landscape, both spatially and temporally. The next phase of this PhD research will involve finding valid methods of comparing and contrasting urban growth patterns and estimated environmental impact in different regions of the world and further exploration of how to link urbanizing landscapes to changes in ecosystem services via environmental indicators.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xi, 91 p.
Series
TRITA-SOM, ISSN 1653-6126 ; 2014-15
Keyword
Urban growth, remote sensing, landcover classification, landscape metrics, environmental indicators, environmental impact, Greater Toronto Area, Stockholm, Shanghai
National Category
Environmental Management
Identifiers
urn:nbn:se:kth:diva-157669 (URN)978-91-7595-353-3 (ISBN)
Presentation
2014-12-12, Seminarierum 4055, 3tr, Drottning Kristinas Väg 30, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20141212

Available from: 2014-12-12 Created: 2014-12-12 Last updated: 2016-02-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Furberg, DorothyBan, Yifang
By organisation
Geodesy and Geoinformatics
Remote SensingEnvironmental Management

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf