Change search
ReferencesLink to record
Permanent link

Direct link
1.3-ÎŒm InGaAs(N)/GaAs vertical-cavity lasers
Show others and affiliations
2003 (English)In: Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, 2003, Vol. 4994, 139-151 p.Conference paper (Refereed)
Abstract [en]

In this work we present performance characteristics of metalorganic vapor-phase epitaxy grown GaInNAs and InGaAs quantum-well (QW) vertical-cavity lasers (VCLs) for 1.3-Όm applications. The InGaAs VCLs emit in a wavelength range from 1200 to somewhat above 1260 nm, while the GaInNAs VCLs operate from 1265 to 1303 nm. The InGaAs VCLs are based on highly strained InGaAs double QWs, with photoluminescence (PL) maximum at around 1190 nm, and extensive negative gain-cavity detuning. As a consequence, these devices are strongly temperature sensitive and the minimum threshold current is found at very high temperature (∌90-100°C). Both kind of VCLs work continuous-wave well above 100°C, and while the InGaAs VCLs reach slightly higher light output power, they show significantly larger threshold currents. In addition, the large device detuning also has profound effects on the high-frequency response. Nevertheless, for a 1260-nm device, 10 Gb/s transmission is demonstrated in a back-to-back configuration. We also show that by further optimization of the InGaAs QWs the PL peak wavelength can be extended to at least 1240 nm. The incorporation of such QWs in the present VCL structure should considerably improve the device performance, resulting in higher light output power, lower threshold current, and reduced temperature sensitivity with a shift of the minimum threshold current towards room temperature, thus approaching standard VCL tuning.

Place, publisher, year, edition, pages
San Jose, CA, 2003. Vol. 4994, 139-151 p.
, Vertical-Cavity Surface-Emitting Lasers VII
Keyword [en]
GaInNAs, Highly strained InGaAs, Long wavelength, Quantum-well laser, Vertical-cavity laser, Light transmission, Photoluminescence, Semiconducting gallium arsenide, Semiconducting indium gallium arsenide, Semiconductor quantum wells, Quantum-well lasers, Lasers
National Category
Condensed Matter Physics
URN: urn:nbn:se:kth:diva-83005DOI: 10.1117/12.482854OAI: diva2:503094
Photonics West
References: Wilmsen, C., Temkin, H., Coldren, L.A., (1999) Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization and Applications, , Cambridge University Press, Cambridge; Electronicast (2002) VCSEL Transceiver Global Market and Technology Forecast; Steele, R., Laser Focus World (2002) Review and Forecasts of the Laser Markets, Part II: Diode Lasers, p. 61. , February; Guden, M., Piprek, J., Material parameters of quaternary III-V semiconductors for multilayer mirrors at 1.55 Όm wavelength (1996) Modelling Simul. Mater. Sci. Eng., 4, pp. 349-357; Salomonsson, F., Mogg, S., Rapp, S., Bentell, J., Sagnes, I., Raj, R., Streubel, K., Hammar, M., Temperature-dependent performance of 1.55 Όm vertical-cavity lasers with InGaAsP/InP bottom mirror (1999) International Indium Phosphide and Related Materials Conference, pp. 223-226. , IEEE, Piscataway, NJ; Rapp, S., Salomonsson, F., Bentell, J., Sagnes, I., Moussa, H., Mériadec, C., Raj, R., Hammar, M., Near room temperature continuous-wave operation of electrically pumped 1.55 Όm vertical cavity lasers with InGaAsP/InP bottom mirror (1999) Electron. Lett., 35 (1), pp. 49-50; Karim, A., Abraham, P., Lofgreen, D., Chiu, Y.-J., Piprek, J., Bowers, J., Wafer bonded 1.55 Όm vertical-cavity lasers with continuous-wave operation up to 105°C (2001) Appl. Phys. Lett., 78 (18), pp. 2632-2633; Jayaraman, V., Geske, J.C., MacDougal, M.H., Peters, F.H., Lowes, T.D., Char, T.T., Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70 °C (1998) Electron. Lett., 34 (14), pp. 1405-1407; Shau, R., Ortsiefer, M., Rosskopf, J., Böhm, G., Köhler, F., Amann, M.-C., Vertical-cavity surface-emitting laser diodes at 1.55 Όm with large output power and high operation temperature (2001) Electron. Lett., 37 (21), pp. 1295-1296; Nakagawa, S., Hall, E., Almuneau, G., Kim, J.K., Buell, D.A., Kroemer, H., Coldren, L.A., 88°C, continuous-wave operation of apertured, intracavity contacted, 1.55 Όm vertical-cavity surface-emitting lasers (2001) Appl. Phys. Lett., 78 (10), pp. 1337-1339; Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M., Nakahara, K., Yazawa, Y., Okai, M., Uomi, K., GaInNAs: A novel material for long-wavelength semiconductor lasers (1997) IEEE J. Sel. Topics in Quantum Electron., 3 (3), pp. 719-730; Jackson, A.W., Naone, R.L., Dalberth, M.J., Smith, J.M., Malone, K.J., Kisker, D.W., Klem, J.F., Geib, K.M., OC-48 capable InGaAsN vertical cavity lasers (2001) Electron. Lett., 37 (6), pp. 355-356; Steinle, G., Mederer, F., Kicherer, M., Michalzik, R., Kristen, G., Egorov, A.Y., Riechert, H., Ebeling, K.J., Data transmission up to 10 Gbit/s with 1.3 Όm wavelength InGaAsN VCSELs (2001) Electron. Lett., 37 (10), pp. 632-634; Ramakrishnan, A., Steinle, G., Supper, D., Degen, C., Ebbinghaus, G., Electrically pumped 10 Gbit/s MOVPE-grown monolithic 1.3 Όm VCSEL with GaInNAs active region (2002) Electron. Lett., 38 (7), pp. 322-324; Takeuchi, T., Chang, Y.-L., Leary, M., Tandon, A., Luan, H.-C., Bour, D., Corzine, S., Tan, M., 1.3 Όm InGaAsN vertical cavity surface emitting lasers grown by MOCVD (2002) Electron. Lett., 38 (23), pp. 1438-1440; Largeau, L., Bondoux, C., Patriarche, G., Asplund, C., Fjioka, A., Salomonsson, F., Hammar, M., Structural effects of the thermal treatment on a GaInNAs/GaAs superlattice (2001) Appl. Phys. Lett., 79 (12), pp. 1795-1797; Lott, J.A., Ledentsov, N.N., Ustinov, V.M., Maleev, N.A., Zhukov, A.E., Kovsh, A.R., Maximov, M.V., Bimberg, D., InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 Όm (2000) Electron. Lett., 36 (16), pp. 1384-1385; Anan, T., Yamada, M., Nishi, K., Kurihara, K., Tokutome, K., Kamei, A., Sugou, S., Continuous-wave operation of 1.30 Όm GaAsSb/GaAs VCSELs (2001) Electron. Lett., 37 (9), pp. 566-567; (2001) IEEE P802.3ae 10Gb/s Ethernet Task Force Working Group Recirculation Ballot Draft, D3.3. , IEEE Standards Department; Serial OC-192 1310nm Very Short Reach (VSR) Interfaces (2001) Implementation Agreement: OIF-VSR4-02.0, Optical Internetworking Forum (OIF); Kudo, M., Mishima, T., Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy (1995) J. Appl. Phys., 78 (3), pp. 1685-1688; Schlenker, D., Miyamoto, T., Chen, Z.B., Kawaguchi, M., Kondo, T., Gouardes, E., Koyama, F., Iga, K., Critical layer thickness of 1.2-Όm highly strained GaInAs/GaAs quantum wells (2000) J. Cryst. Growth, 221, pp. 503-508; Ryu, S.-W., Dapkus, P.D., Highly strained InGaAs QW VCSEL with lasing wavelength at 1.22 Όm (2001) Electron. Lett., 37 (3), pp. 177-178; Salomonsson, F., Asplund, C., Sundgren, P., Plaine, G., Mogg, S., Hammar, M., Low-threshold high-temperature operation of 1.2-Όm InGaAs vertical cavity lasers (2001) Electron. Lett., 37 (15), pp. 957-958; Joos, J., Mederer, F., Kicherer, M., Ecker, I., JÀger, R., Schmid, W., Grabherr, M., Ebeling, K.J., 2.5-Gb/s data transmission over 10-km standard single-mode fiber using InGaAs VCSEL's at 1.13-Όm emission wavelength (2000) IEEE Photonics Technol. Lett., 12 (3), pp. 344-346; Asplund, C., Sundgren, P., Mogg, S., Hammar, M., Christiansson, U., Oscarsson, V., Runnström, C., Malmquist, J., 1260 nm InGaAs vertical-cavity lasers (2002) Electron. Lett., 38 (13), pp. 635-636; Sato, S., Satoh, S., 1.21 Όm continuous-wave operation of highly strained GaInAs quantum well lasers on GaAs substrates (1999) Jpn. J. Appl. Phys., 38 (9 PART 2 AND A-B), pp. L990-L992; Choi, W.-J., Dapkus, P.D., Jewell, J.J., 1.2 Όm GaAsP/InGaAs strain compensated single-quantum-well diode laser on GaAs using metal-organic chemical vapor deposition (1999) IEEE Photonics Technol. Lett., 11 (2), pp. 1572-1574; Bugge, F., Erbert, G., Fricke, J., Gramlich, S., Staske, R., Wenzel, H., Zeimer, U., Weyers, M., 12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells (2001) Appl. Phys. Lett., 79 (13), pp. 1965-1967; Tansu, N., Mawst, L.J., High-performance strain-compensated InGaAs-GaAsP-GaAs (λ = 1.17 Όm) quantum-well diode lasers (2001) IEEE Photonics Technol. Lett., 13 (3), pp. 179-181; Kondo, T., Schlenker, D., Miyamoto, T., Chen, Z., Kawaguchi, M., Gouardes, E., Koyama, F., Iga, K., Lasing characteristics of 1.2 Όm highly strained GaInAs/GaAs quantum well lasers (2001) Jpn. J. Appl. Phys., 40, pp. 467-471; Takeuchi, T., Chang, Y.-L., Tandon, A., Bour, D., Corzine, S., Twist, R., Tan, M., Low threshold 1.2 Όm InGaAs quantum well lasers grown under low As/ III ratio (2002) Appl. Phys. Lett., 80 (14), pp. 2445-2447; Matthews, J.W., Blakeslee, A.E., Defects in epitaxial multilayers (1974) J. Cryst. Growth, 27, pp. 118-125; Choi, W.-J., Dapkus, P.D., Jewell, J.J., 1.2 Όm GaAsP/InGaAs Strain Compensated Single-Quantum-Well Diode Laser on GaAs Using Metal-Organic Chemical Vapor Deposition (1999) IEEE Photonics Technol. Lett., 11 (12), pp. 1572-1574; Schlenker, D., Miyamoto, T., Chen, Z., Koyama, F., Iga, K., Growth of highly strained GaInAs/GaAs quantum wells for 1.2 Όm wavelength lasers (2000) J. Crystal Growth, 209, pp. 27-36; Mogg, S., Plaine, G., Asplund, C., Sundgren, P., Baskar, K., Mulot, M., Schatz, R., Hammar, M., High-performance 1.2-Όm highly strained InGaAs/GaAs quantum well lasers (2002) International Indium Phosphide and Related Materials Conference, pp. 107-110. , IEEE, Piscataway, NJ; Mogg, S., Chitica, N., Schatz, R., Hammar, M., Properties of highly strained InGaAs/GaAs quantum wells for 1.2-Όm laser diodes (2002) Appl. Phys. Lett., 81 (13), pp. 2334-2336; Bugge, F., Zorn, M., Zeimer, U., Sharma, T., Kissel, H., HÌlsewede, R., Erbert, G., Weyers, M., Highly strained very high-power laser diodes with InGaAs QWs (2003) J. Crystal Growth, 248, pp. 354-358; Kondo, T., Arai, M., Onomura, A., Miyamoto, T., Koyama, F., 1.23 Όm long wavelength highly strained GaInAs/GaAs quantum well laser (2002) Proceedings LEOS 2002, pp. 618-619. , Glasgow, Scotland; Baets, R., Demeester, P., Lagasse, P.E., High-reflectivity GaAs-AIGaAs mirrors: Sensitivity analysis with respect to epitaxial growth parameters (1987) J. Appl. Phys., 62 (2), pp. 723-726; Tai, K., Yang, L., Wang, Y.H., Wynn, J.D., Cho, A.Y., Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers (1990) Appl. Phys. Lett., 56 (25), pp. 2496-2498; Asplund, C., Mogg, S., Plaine, G., Salomonsson, F., Chitica, N., Hammar, M., Doping-induced losses in AlAs/GaAs distributed Bragg reflectors (2001) J. Appl. Phys., 90 (2), pp. 794-800; Tell, B., Brown-Goebeler, K.F., Leibenguth, R.E., Baez, F.M., Lee, Y.H., Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers (1992) Appl. Phys. Lett., 60 (6), pp. 683-685; Takaoka, K., Ishikawa, M., Hatakoshi, G., Low-threshold and High-temperature operation of InGaAlP-based proton-implanted red VCSELs (2001) IEEE J. Sel. Top. Quant., 7 (2), pp. 381-385; Mogg, S., to be publishedLear, K.L., Mar, A., Chouquette, K.D., Kilcoyne, S.P., Schneider R.P., Jr., Geib, K.M., High-frequency modulation of oxide-confined vertical cavity surface emitting laser (1996) Electron. Lett., 32 (5), pp. 457-458; Waters, R.G., Bour, D.P., Yellen, S.L., Ruggieri, N.F., Inhibited dark-line defect formation in strained InGaAs/AlGaAs quantum well lasers (1990) IEEE Photon. Technol. Lett., 2 (8), pp. 531-533 NR 20140805Available from: 2012-02-14 Created: 2012-02-12 Last updated: 2012-02-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 163 hits
ReferencesLink to record
Permanent link

Direct link