Change search
ReferencesLink to record
Permanent link

Direct link
Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification
University of Ulster.ORCID iD: 0000-0001-6553-823X
University of Ulster.
University of Ulster.
2008 (English)In: IEEE transactions on neural systems and rehabilitation engineering, ISSN 1534-4320, E-ISSN 1558-0210, ISSN 1534-4320, Vol. 16, no 4, 317-326 p.Article in journal (Refereed) Published
Abstract [en]

The quantification of the spectral content of electroencephalogram (EEG) recordings has a substantial role in clinical and scientific applications. It is of particular relevance in the analysis of event-related brain oscillatory responses. This work is focused on the identification and quantification of relevant frequency patterns in motor imagery (MI) related EEGs utilized for brain--computer interface (BCI) purposes. The main objective of the paper is to perform comparative analysis of different approaches to spectral signal representation such as power spectral density (PSD) techniques, atomic decompositions, time-frequency (t-f) energy distributions, continuous and discrete wavelet approaches, from which band power features can be extracted and used in the framework of MI classification. The emphasis is on identifying discriminative properties of the feature sets representing EEG trials recorded during imagination of either left-- or right-hand movement. Feature separability is quantified in the offline study using the classification accuracy (CA) rate obtained with linear and nonlinear classifiers. PSD approaches demonstrate the most consistent robustness and effectiveness in extracting the distinctive spectral patterns for accurately discriminating between left and right MI induced EEGs. This observation is based on an analysis of data recorded from eleven subjects over two sessions of BCI experiments. In addition, generalization capabilities of the classifiers reflected in their intersession performance are discussed in the paper..

Place, publisher, year, edition, pages
2008. Vol. 16, no 4, 317-326 p.
Keyword [en]
electroencephalogram, pattern recognition, spectral analysis, brain-computer interface, feature extraction
National Category
Other Computer and Information Science
URN: urn:nbn:se:kth:diva-90085DOI: 10.1109/TNSRE.2008.926694ISI: 000258571800001ScopusID: 2-s2.0-49649127153OAI: diva2:504138

QC 20120305

Available from: 2012-02-19 Created: 2012-02-18 Last updated: 2014-04-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Herman, Pawel Andrzej
In the same journal
IEEE transactions on neural systems and rehabilitation engineering
Other Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link